Structural weaknesses of mappings with a low differential uniformity

Anne Canteaut and Maria Naya-Plasencia

INRIA Paris-Rocquencourt, France

Fq9, July 16, 2009

Outline

- 1. An (unsuitable) property of the permutations which guarantee a high resistance to differential cryptanalysis.
- 2. An attack on a new hash function proposal based on this property.
- 3. Impact of the algebraic structure of the image sets of the derivatives; link with crooked functions.

Differential cryptanalysis [Biham-Shamir 91]

Differential cryptanalysis exploits the existence of (α, β) such that

 $F(M + \alpha) + F(M) = \beta$ for many values of M.

Differential uniformity of $F : \mathbf{F}_2^n \to \mathbf{F}_2^n$ [Nyberg 93]

$$\Delta(\alpha,\beta) = \#\{x \in \mathbf{F}_2^n, \ F(x+\alpha) + F(x) = \beta\}.$$

 $\Delta_F = \max_{lpha
eq 0,eta} \Delta(lpha,eta)$ is the differential uniformity of F.

Proposition For any $F: \mathrm{F}_2^n o \mathrm{F}_2^n$,

 $\Delta_F \geq 2$

and equality holds for APN (almost perfect nonlinear) functions.

When n is even and $n \ge 8$, no APN permutation of \mathbf{F}_2^n is known.

$$\longrightarrow$$
 permutations with $\Delta_F = 4$ are used, e.g., $x \mapsto x^{2^n-2}$ over F_{2^n} .

A related quantity

$$D(oldsymbol{eta})=\{lpha\in {
m F}_2^n,\;\; \exists x\in {
m F}_2^n \; {
m with}\; F(x+lpha)+F(x)=oldsymbol{eta}\}.$$
 $D_F=\max_{oldsymbol{eta}\in {
m F}_2^n} \#D(oldsymbol{eta}).$

Proposition Let F be a permutation of F_2^n . Then, for any $eta\in\mathrm{F}_2^n$,

$$D(\boldsymbol{\beta}) = \{ \alpha \in \mathbf{F}_2^n, \exists x \in \mathbf{F}_2^n \text{ with } F(x + \alpha) + F(x) = \boldsymbol{\beta} \}$$
$$= \{ F^{-1}(x + \boldsymbol{\beta}) + F^{-1}(x), x \in \mathbf{F}_2^n \}.$$

Link between D_F and Δ_F

Proposition For any nonzero $eta \in \mathrm{F}_2^n$,

 $\#D(eta)\geq rac{2^n}{\Delta_F}$

with equality if and only if all equations

$$F(x+lpha)+F(x)=eta,\;lpha
eq 0$$

have either 0 or Δ_F solutions.

Corollaries.

- $D_F = \max_eta \# D(eta) = 1$ if and only if F has degree 1.
- If F is APN, then $\#D(\beta) = 2^{n-1}$ for all $\beta \neq 0$.

An attack against a hash function exploiting a high D_F

Cryptographic hash functions

$$H: \{0,1\}^* \longrightarrow \mathrm{F}_2^h,$$
 e.g. $h=256,512.$

Collision resistance.

Find
$$(x, x')$$
 such that $H(x) = H(x')$.

Generic algorithm: a set of $2^{\frac{h}{2}}$ random inputs contains a collision with probability more than 1/2.

Security requirement: the generic algorithm must be the most efficient method for finding a collision.

Maraca [Jenkins Jr 08]

submitted to the SHA-3 competition (among 64 candidates).

internal state: n = 1024 bits

Underlying permutation *P*:

permutation of ${f F}_2^n$, concatenation of 128 copies of a quadratic permutation of ${f F}_2^8$.

Finding an internal collision for Maraca

Beginning of the last round.

where δ and m are fixed, but chosen by the attacker.

Internal collision:

$$P(S_a + m) = P(S_b + m) + \delta.$$

Find (S_a,S_b) such that there exists $m\in \mathrm{F}_2^n$ satisfying

$$P(S_a + m) + P(S_b + m) = \delta.$$

or equivalently such that

 $S_a+S_b\in D(\delta),$ since $D(\delta)=\{lpha\in {
m F}_2^n,\ \exists x\in {
m F}_2^n\ {
m with}\ F(x+lpha)+F(x)=\delta\}.$

Data complexity:

$$N=rac{2^{rac{n}{2}}}{\sqrt{\#D(\delta)}}$$
 values of S_a and $S_b.$

Finding an internal collision for Maraca (3)

```
for N values of a do
  compute S_a.
end for
for N values of b do
  compute S_b.
end for
for all pairs (S_a, S_b) do
  if S_a + S_b \in D(\delta) then
     find m such that P(m + S_a + S_b) + P(m) = \delta.
  end if
end for
```

Time complexity:

$$rac{\log(\#D(\delta))}{\#D(\delta)} imes 2^n.$$

ightarrow faster than the generic algorithm if $D(\delta)>2^{n-rac{h}{2}}.$

If P is based on the inverse function

P: 128 copies of the inverse function π over F_{2^8} .

$$D_{\pi}(\delta) = \{(x + \delta)^{-1} + x^{-1}, \ x \in \mathrm{F}_{2^m}\}$$

For any nonzero $\delta \in \mathrm{F}_{2^m}$, $\# D_\pi(\delta) = 2^{m-1} - 1$.

For the parameters of Maraca:

$$\#D_P(\delta) = (2^7 - 1)^{128} = 2^{895}$$

leading to an attack with 2^{65} hash computations and time complexity 2^{146} .

$$\max_{\delta} D_P(\delta) = (21)^{128} = 2^{461} < 2^{768}.$$

Problem: Can we find a faster method for determining all pairs (S_a, S_b) such that $S_a + S_b \in D(\delta)$?

 \rightarrow use the algebraic structure of $D(\delta)$.

$D(\delta)$ is an affine subspace

$$D(\delta) = \{F^{-1}(x + \delta) + F^{-1}(x), x \in \mathbb{F}_2^n\}.$$

Suppose that $D(\delta) = \gamma + V$ where $\dim(V) = d$.

Decompose all S_a (resp. S_b) with respect to $V \times W$ Sort both lists according to $(S_a)_W$ (resp. $(S_b)_W$).

for all S_a do

determine whether there exists S_b in the list with $(S_b)_W = (S_a)_W + \gamma$. end for

Time complexity:

$$2(n-d)2^{\frac{n-d}{2}}.$$

 \rightarrow faster than the generic algorithm if d > n - h.

$D(\delta)$ is included in an (affine) subspace

Suppose that there is an (affine) subpace V such that $D(\delta) \subset V$.

Then, V can used for sieving the pairs (S_a, S_b) .

For Maraca:

For π over \mathbf{F}_2^8 , $D_{\pi}(\delta)$ is included in an affine subspace of dimension 5.

For P over ${
m F}_2^{1024}$, $D_P(\delta)$ is included in an affine subspace of dimension 640.

 \rightarrow attack with time complexity 2^{240} .

Examples of functions for which all $D(\delta)$ have a particular structure

$$D(\delta) = \{F^{-1}(x + \delta) + F^{-1}(x), x \in \mathbb{F}_2^n\}.$$

Inverse of a quadratic permutation:

If F^{-1} has degree 2, then $D(\delta)$ is an affine subspace for any δ .

Crooked functions [Bending, Fon-der-Flaas 98][Kyureghyan 07]:

F is crooked if for any nonzero δ , $\{F(x + \delta) + F(x), x \in \mathbb{F}_2^n\}$ is an (affine) hyperplane.

 \Rightarrow If F^{-1} is crooked, then $D(\delta)$ is an affine hyperplane for any nonzero δ .

Conjecture. All crooked functions are quadratic. [Kyureghyan 07], [Bierbrauer, Kyureghyan 08]

Related problems

Open problem. Is there a permutation F with $deg(F^{-1}) > 2$ such that $D(\delta)$ is an affine subspace for any nonzero δ ?

Proposition For monomial permutations, $x \mapsto x^s$, these functions are exactly the inverses of the quadratic permutations.

Open problem. Characterize the permutations F over F_2^n such that, there exists an input difference $\delta \neq 0$ for which

$$\{F(x+\delta)+F(x), x\in \mathbf{F}_2^n\}$$

is a large affine subspace.

Conclusions

[Indesteege 09]: linear cryptanalysis of Maraca \Rightarrow "the weakness of Maraca is due to the use of a bad permutation regarding linear and differential attacks".

But:

- The functions which guarantee a good resistance to differential cryptanalysis may introduce unexpected weaknesses.
- The algebraic structure of $D(\delta)$ may be relevant for the security.