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Outline

1. An (unsuitable) property of the permutations which guarantee
a high resistance to di�erential cryptanalysis.

2. An attack on a new hash function proposal based on this
property.

3. Impact of the algebraic structure of the image sets of the
derivatives; link with crooked functions.
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Di�erential cryptanalysis [Biham-Shamir 91]
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Di�erential cryptanalysis exploits the existence of (α, β) such that

F (M + α) + F (M) = β for many values of M.
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Di�erential uniformity of F : Fn
2 → Fn

2 [Nyberg 93]

∆(α, β) = #{x ∈ Fn
2 , F (x + α) + F (x) = β}.

∆F = max
α 6=0,β

∆(α, β) is the di�erential uniformity of F.

Proposition For any F : Fn
2 → Fn

2 ,

∆F ≥ 2

and equality holds for APN (almost perfect nonlinear) functions.

When n is even and n ≥ 8, no APN permutation of Fn
2 is known.

−→ permutations with ∆F = 4 are used,
e.g., x 7→ x2n−2 over F2n.
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A related quantity

D(β) = {α ∈ Fn
2 , ∃x ∈ Fn

2 with F (x + α) + F (x) = β}.

DF = max
β∈Fn

2

#D(β).

Proposition Let F be a permutation of Fn
2 . Then, for any β ∈ Fn

2 ,

D(β) = {α ∈ Fn
2 , ∃x ∈ Fn

2 with F (x + α) + F (x) = β}
= {F −1(x + β) + F −1(x), x ∈ Fn

2}.
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Link between DF and ∆F

Proposition For any nonzero β ∈ Fn
2 ,

#D(β) ≥ 2n

∆F

with equality if and only if all equations

F (x + α) + F (x) = β, α 6= 0

have either 0 or ∆F solutions.

Corollaries.

• DF = maxβ #D(β) = 1 if and only if F has degree 1.

• If F is APN, then #D(β) = 2n−1 for all β 6= 0.
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An attack against a hash function
exploiting a high DF
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Cryptographic hash functions

H : {0, 1}∗ −→ Fh
2 , e.g. h = 256, 512.

Collision resistance.

Find (x, x′) such that H(x) = H(x′).

Generic algorithm: a set of 2
h
2 random inputs contains a collision

with probability more than 1/2.

Security requirement: the generic algorithm must be the most
e�cient method for �nding a collision.
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Maraca [Jenkins Jr 08]

submitted to the SHA-3 competition (among 64 candidates).

internal state: n = 1024 bits

Underlying permutation P :

permutation of Fn
2, concatenation of 128 copies of a quadratic

permutation of F8
2.
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Finding an internal collision for Maraca

Beginning of the last round.
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where δ and m are �xed, but chosen by the attacker.

Internal collision:

P (Sa + m) = P (Sb + m) + δ.

9



Finding an internal collision for Maraca (2)

Find (Sa, Sb) such that there exists m ∈ Fn
2 satisfying

P (Sa + m) + P (Sb + m) = δ.

or equivalently such that

Sa + Sb ∈ D(δ),

since D(δ) = {α ∈ Fn
2 , ∃x ∈ Fn

2 with F (x + α) + F (x) = δ}.

Data complexity:

N =
2

n
2√

#D(δ)
values of Sa and Sb.
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Finding an internal collision for Maraca (3)

for N values of a do
compute Sa.

end for
for N values of b do
compute Sb.

end for
for all pairs (Sa, Sb) do
if Sa + Sb ∈ D(δ) then

�nd m such that P (m + Sa + Sb) + P (m) = δ.
end if

end for

Time complexity:
log(#D(δ))

#D(δ)
× 2n.

→ faster than the generic algorithm if D(δ) > 2n−h
2 .
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If P is based on the inverse function

P : 128 copies of the inverse function π over F28.

Dπ(δ) = {(x + δ)−1 + x−1, x ∈ F2m}
For any nonzero δ ∈ F2m, #Dπ(δ) = 2m−1 − 1.

For the parameters of Maraca:

#DP (δ) = (27 − 1)128 = 2895

leading to an attack with 265 hash computations and
time complexity 2146.
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For the original permutation used in Maraca

max
δ

DP (δ) = (21)128 = 2461 < 2768.

Problem: Can we �nd a faster method for determining all pairs
(Sa, Sb) such that Sa + Sb ∈ D(δ)?

→ use the algebraic structure of D(δ).
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D(δ) is an a�ne subspace

D(δ) = {F −1(x + δ) + F −1(x), x ∈ Fn
2}.

Suppose that D(δ) = γ + V where dim(V ) = d.
Decompose all Sa (resp. Sb) with respect to V × W

Sort both lists according to (Sa)W (resp. (Sb)W ).
for all Sa do
determine whether there exists Sb in the list with (Sb)W = (Sa)W + γ.

end for

Time complexity:

2(n − d)2
n−d

2 .

→ faster than the generic algorithm if d > n − h.
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D(δ) is included in an (a�ne) subspace

Suppose that there is an (a�ne) subpace V such that D(δ) ⊂ V .

Then, V can used for sieving the pairs (Sa, Sb).

For Maraca:

For π over F8
2, Dπ(δ) is included in an a�ne subspace

of dimension 5.

For P over F1024
2 , DP (δ) is included in an a�ne subspace

of dimension 640.

→ attack with time complexity 2240.
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Examples of functions for which all D(δ) have a particular structure

D(δ) = {F −1(x + δ) + F −1(x), x ∈ Fn
2}.

Inverse of a quadratic permutation:

If F −1 has degree 2, then D(δ) is an a�ne subspace for any δ.

Crooked functions [Bending, Fon-der-Flaas 98][Kyureghyan 07]:

F is crooked if for any nonzero δ, {F (x + δ) + F (x), x ∈ Fn
2} is

an (a�ne) hyperplane.

⇒ If F −1 is crooked, then D(δ) is an a�ne hyperplane for any
nonzero δ.

Conjecture. All crooked functions are quadratic.
[Kyureghyan 07], [Bierbrauer, Kyureghyan 08]
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Related problems

Open problem. Is there a permutation F with deg(F −1) > 2 such
that D(δ) is an a�ne subspace for any nonzero δ?

Proposition For monomial permutations, x 7→ xs, these functions
are exactly the inverses of the quadratic permutations.

Open problem. Characterize the permutations F over Fn
2 such

that, there exists an input di�erence δ 6= 0 for which

{F (x + δ) + F (x), x ∈ Fn
2}

is a large a�ne subspace.
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Conclusions

[Indesteege 09]: linear cryptanalysis of Maraca
⇒ �the weakness of Maraca is due to the use of a bad permutation
regarding linear and di�erential attacks�.

But:

• The functions which guarantee a good resistance to
di�erential cryptanalysis may introduce unexpected weaknesses.

• The algebraic structure of D(δ) may be relevant for the
security.
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