Structural weaknesses of mappings

with a low differential uniformity

Anne Canteaut and Maria Naya-Plasencia

INRIA Paris-Rocquencourt, France

Fq9, July 16, 2009

Outline

1. An (unsuitable) property of the permutations which guarantee a high resistance to differential cryptanalysis.
2. An attack on a new hash function proposal based on this property.
3. Impact of the algebraic structure of the image sets of the derivatives; link with crooked functions.

Differential cryptanalysis [Biham-Shamir 91]

Differential cryptanalysis exploits the existence of (α, β) such that

$$
\boldsymbol{F}(\boldsymbol{M}+\alpha)+\boldsymbol{F}(\boldsymbol{M})=\beta \text { for many values of } \boldsymbol{M} .
$$

Differential uniformity of $F: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n}$ [Nyberg 93]

$$
\Delta(\alpha, \beta)=\#\left\{x \in \mathrm{~F}_{2}^{n}, \quad \boldsymbol{F}(\boldsymbol{x}+\alpha)+\boldsymbol{F}(x)=\beta\right\} .
$$

$$
\Delta_{F}=\max _{\alpha \neq 0, \beta} \boldsymbol{\Delta}(\alpha, \beta) \text { is the differential uniformity of } \boldsymbol{F} .
$$

Proposition For any $\boldsymbol{F}: \mathrm{F}_{2}^{n} \rightarrow \mathrm{~F}_{2}^{n}$,

$$
\Delta_{F} \geq 2
$$

and equality holds for APN (almost perfect nonlinear) functions.
When n is even and $n \geq 8$, no APN permutation of F_{2}^{n} is known.
\longrightarrow permutations with $\Delta_{F}=4$ are used,

$$
\text { e.g., } x \mapsto x^{2^{n}-2} \text { over } \mathrm{F}_{2^{n}} .
$$

A related quantity

$$
\boldsymbol{D}(\beta)=\left\{\alpha \in \mathbf{F}_{2}^{n}, \quad \exists x \in \mathbf{F}_{2}^{n} \text { with } \boldsymbol{F}(x+\alpha)+\boldsymbol{F}(x)=\beta\right\} .
$$

$$
\boldsymbol{D}_{\boldsymbol{F}}=\max _{\beta \in \mathrm{F}_{2}^{n}} \# \boldsymbol{D}(\beta) .
$$

Proposition Let \boldsymbol{F} be a permutation of $\mathbf{F}_{2}^{\boldsymbol{n}}$. Then, for any $\beta \in \mathbf{F}_{2}^{\boldsymbol{n}}$,

$$
\begin{aligned}
D(\beta) & =\left\{\alpha \in \mathrm{F}_{2}^{n}, \quad \exists x \in \mathrm{~F}_{2}^{n} \text { with } \boldsymbol{F}(x+\alpha)+\boldsymbol{F}(x)=\beta\right\} \\
& =\left\{F^{-1}(x+\beta)+F^{-1}(x), \quad x \in \mathrm{~F}_{2}^{n}\right\}
\end{aligned}
$$

Link between D_{F} and Δ_{F}

Proposition For any nonzero $\beta \in \mathrm{F}_{2}^{n}$,

$$
\# D(\beta) \geq \frac{2^{n}}{\Delta_{F}}
$$

with equality if and only if all equations

$$
F(x+\alpha)+F(x)=\beta, \alpha \neq 0
$$

have either $\mathbf{0}$ or $\boldsymbol{\Delta}_{\boldsymbol{F}}$ solutions.

Corollaries.

- $\boldsymbol{D}_{\boldsymbol{F}}=\max _{\boldsymbol{\beta}} \# \boldsymbol{D}(\boldsymbol{\beta})=1$ if and only if \boldsymbol{F} has degree 1 .
- If \boldsymbol{F} is APN , then $\# \boldsymbol{D}(\boldsymbol{\beta})=2^{n-1}$ for all $\boldsymbol{\beta} \neq 0$.

An attack against a hash function exploiting a high D_{F}

Cryptographic hash functions

$$
H:\{0,1\}^{*} \longrightarrow \mathbf{F}_{2}^{h}, \text { e.g. } h=256,512
$$

Collision resistance.

$$
\text { Find }\left(x, x^{\prime}\right) \text { such that } \boldsymbol{H}(x)=\boldsymbol{H}\left(x^{\prime}\right) .
$$

Generic algorithm: a set of $2^{\frac{h}{2}}$ random inputs contains a collision with probability more than $1 / 2$.

Security requirement: the generic algorithm must be the most efficient method for finding a collision.

Maraca [Jenkins Jr 08]

submitted to the SHA-3 competition (among 64 candidates).
internal state: $n=1024$ bits

Underlying permutation P :
permutation of \mathbf{F}_{2}^{n}, concatenation of 128 copies of a quadratic permutation of $\mathbf{F}_{2}^{\mathbf{8}}$.

Finding an internal collision for Maraca

Beginning of the last round.

where $\boldsymbol{\delta}$ and \boldsymbol{m} are fixed, but chosen by the attacker.
Internal collision:

$$
\boldsymbol{P}\left(S_{a}+\boldsymbol{m}\right)=\boldsymbol{P}\left(S_{b}+\boldsymbol{m}\right)+\delta
$$

Finding an internal collision for Maraca (2)

Find (S_{a}, S_{b}) such that there exists $m \in \mathbf{F}_{2}^{n}$ satisfying

$$
\boldsymbol{P}\left(S_{a}+\boldsymbol{m}\right)+\boldsymbol{P}\left(S_{b}+\boldsymbol{m}\right)=\delta
$$

or equivalently such that

$$
S_{a}+S_{b} \in D(\delta)
$$

since $\boldsymbol{D}(\delta)=\left\{\alpha \in \mathrm{F}_{2}^{n}, \quad \exists \boldsymbol{x} \in \mathrm{~F}_{2}^{n}\right.$ with $\left.\boldsymbol{F}(\boldsymbol{x}+\alpha)+\boldsymbol{F}(\boldsymbol{x})=\delta\right\}$.
Data complexity:

$$
N=\frac{2^{\frac{n}{2}}}{\sqrt{\# D(\delta)}} \text { values of } S_{a} \text { and } S_{b}
$$

Finding an internal collision for Maraca (3)

```
for }N\mathrm{ values of a do
    compute Sa
end for
for }N\mathrm{ values of b do
    compute S}\mp@subsup{\boldsymbol{S}}{\boldsymbol{b}}{
end for
for all pairs ( }\mp@subsup{\boldsymbol{S}}{\boldsymbol{a}}{,},\mp@subsup{\boldsymbol{S}}{\boldsymbol{b}}{})\mathrm{ do
    if S}\mp@subsup{S}{a}{}+\mp@subsup{S}{b}{}\inD(\delta)\mathrm{ then
        find}\boldsymbol{m}\mathrm{ such that P(m+ Sa}+\mp@subsup{S}{b}{})+P(m)=\delta
    end if
end for
```

Time complexity:

$$
\frac{\log (\# D(\delta))}{\# D(\delta)} \times 2^{n}
$$

\rightarrow faster than the generic algorithm if $D(\delta)>2^{n-\frac{h}{2}}$.

If P is based on the inverse function

$P: 128$ copies of the inverse function π over $\mathbf{F}_{2^{8}}$.

$$
D_{\pi}(\delta)=\left\{(x+\delta)^{-1}+x^{-1}, \quad x \in \mathbf{F}_{2^{m}}\right\}
$$

For any nonzero $\delta \in \mathrm{F}_{2}{ }^{m}, \# D_{\pi}(\delta)=2^{m-1}-1$.

For the parameters of Maraca:

$$
\# D_{P}(\delta)=\left(2^{7}-1\right)^{128}=2^{895}
$$

leading to an attack with 2^{65} hash computations and time complexity 2^{146}.

For the original permutation used in Maraca

$$
\max _{\delta} D_{P}(\delta)=(21)^{128}=2^{461}<2^{768}
$$

Problem: Can we find a faster method for determining all pairs $\left(S_{a}, S_{b}\right)$ such that $S_{a}+S_{b} \in D(\delta)$?
\rightarrow use the algebraic structure of $D(\delta)$.

$D(\delta)$ is an affine subspace

$$
D(\delta)=\left\{F^{-1}(x+\delta)+F^{-1}(x), \quad x \in \mathrm{~F}_{2}^{n}\right\} .
$$

Suppose that $D(\delta)=\gamma+V$ where $\operatorname{dim}(V)=d$.
Decompose all S_{a} (resp. S_{b}) with respect to $V \times W$ Sort both lists according to $\left(S_{a}\right)_{W}$ (resp. $\left.\left(S_{b}\right)_{W}\right)$.
for all S_{a} do
determine whether there exists S_{b} in the list with $\left(S_{b}\right)_{W}=\left(S_{a}\right)_{W}+\gamma$. end for

Time complexity:

$$
2(n-d) 2^{\frac{n-d}{2}}
$$

\rightarrow faster than the generic algorithm if $\boldsymbol{d}>\boldsymbol{n}-\boldsymbol{h}$.

$D(\delta)$ is included in an (affine) subspace

Suppose that there is an (affine) subpace V such that $D(\delta) \subset V$. Then, V can used for sieving the pairs $\left(\boldsymbol{S}_{\boldsymbol{a}}, \boldsymbol{S}_{\boldsymbol{b}}\right)$.

For Maraca:

For $\boldsymbol{\pi}$ over $\mathbf{F}_{2}^{8}, \boldsymbol{D}_{\boldsymbol{\pi}}(\boldsymbol{\delta})$ is included in an affine subspace of dimension 5 .

For P over $\mathbf{F}_{2}^{1024}, D_{P}(\delta)$ is included in an affine subspace of dimension 640.
\rightarrow attack with time complexity 2^{240}.

Examples of functions for which all $D(\delta)$ have a particular structure

$$
D(\delta)=\left\{F^{-1}(x+\delta)+F^{-1}(x), \quad x \in \mathbf{F}_{2}^{n}\right\}
$$

Inverse of a quadratic permutation:
If \boldsymbol{F}^{-1} has degree 2 , then $\boldsymbol{D}(\boldsymbol{\delta})$ is an affine subspace for any $\boldsymbol{\delta}$.
Crooked functions [Bending, Fon-der-Flaas 98][Kyureghyan 07]:
\boldsymbol{F} is crooked if for any nonzero $\boldsymbol{\delta},\left\{\boldsymbol{F}(\boldsymbol{x}+\boldsymbol{\delta})+\boldsymbol{F}(\boldsymbol{x}), \boldsymbol{x} \in \mathrm{F}_{2}^{n}\right\}$ is an (affine) hyperplane.
\Rightarrow If \boldsymbol{F}^{-1} is crooked, then $\boldsymbol{D}(\boldsymbol{\delta})$ is an affine hyperplane for any nonzero $\boldsymbol{\delta}$.

Conjecture. All crooked functions are quadratic.
[Kyureghyan 07], [Bierbrauer, Kyureghyan 08]

Related problems

Open problem. Is there a permutation \boldsymbol{F} with $\operatorname{deg}\left(\boldsymbol{F}^{-1}\right)>2$ such that $\boldsymbol{D}(\boldsymbol{\delta})$ is an affine subspace for any nonzero $\boldsymbol{\delta}$?

Proposition For monomial permutations, $\boldsymbol{x} \mapsto \boldsymbol{x}^{s}$, these functions are exactly the inverses of the quadratic permutations.

Open problem. Characterize the permutations \boldsymbol{F} over $\mathbf{F}_{2}^{\boldsymbol{n}}$ such that, there exists an input difference $\delta \neq 0$ for which

$$
\left\{F(x+\delta)+F(x), x \in F_{2}^{n}\right\}
$$

is a large affine subspace.

Conclusions

[Indesteege 09]: linear cryptanalysis of Maraca
\Rightarrow "the weakness of Maraca is due to the use of a bad permutation regarding linear and differential attacks".

But:

- The functions which guarantee a good resistance to differential cryptanalysis may introduce unexpected weaknesses.
- The algebraic structure of $\boldsymbol{D}(\boldsymbol{\delta})$ may be relevant for the security.

