On the Cycles Structure of
Permutations Induced by the
Perfect Nonlinear Functions over
Finite Fields

Hassan Aly and Rasha Shaheen

Department of Mathematics,
Faculty of Science,
Cairo University,
Giza 12613, Egypt

—-—n. 1/31



Definitions

Throughout this talk¥, Is the finite field of order
q = p™ wherep IS an odd prime andh IS a positive
Integer.

Definition 1 A functionf : F, — [, is said to be
perfect nonlinear function, or shortly PNF, if

o(z,a) = f(z +a) = flz) = fla)

IS a permutation oveF, for everya € .

Sometimes we call(x, a) as the difference function
of f.
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Definitions

Perfect Nonlinear Functions are used in different
applications In

1. Cryptography

2. Coding

3. Finite Geometry, and
4. Combinatorial design
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SO0me perfect nonlinear tunc-
tions

1. fi(xz) = 2° overF m,
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m > 5 1S odd.



The diference functions
1. 41(x, a) = 2az overF m,



The diference functions
1. 41(x, a) = 2az overF m,

2. 0o(x,a) = az? + a?' z overF,» where
m/ged(m, k) 1s odd andk < m/2,



The diference functions
1. 41(x, a) = 2az overF m,

2. 0o(x,a) = az? + a?' z overF,» where
m/ged(m, k) 1s odd andk < m/2,

3. 03(w,a) = ax’ + a’z® + (a’ + a)z over
Fsm wherem > 5 1s odd,



The diference functions

1.

2.

01(x,a) = 2azx overF m,

0o, a) = az? + a?' z overF,» where
m/ged(m, k) 1s odd andk < m/2,

. 03(x,a) = ax’ + a’z’ + (a’ + a)x over

Fsm wherem > 5 1s odd,

. 04(z,a) = ax’ — a’x° + (a’ + a)x over

Fsm wherem > 5 1s odd.



Objectives

This talk Is about some properties of the difference
permutation®, s, 03, andd,. We will

1. count the number of fixed points of these
permutations.
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Objectives

This talk Is about some properties of the difference
permutation®, s, 03, andd,. We will

1.

2.

count the number of fixed points of these
permutations.

count the number of cycles of each permutation
and their lengthes for values ofin the prime
finite field.

. discuss cases have the same number of cycles of

the same lengthes.

. Introduce some notes on other PNF and further

work In this direction.
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Fixed Points

A fixed point of a permutation(z) overF, is a point
cinF, such thatr(c) = c. It is easy to see that the
permutation (x, a) = 2ax has

' _ 1
Ifa—2

: q
Fiz(o1(z,a)) = { 1 otherwise

—n. 7/31



Fixed Points

Theorem 2 The number of fixed points of the
permutationss;(z, a) = az? + a?' z for a € F is
given by

d if (pF ]
| D f P — 1 J
Fiz(02(z,a)) = { 1 ot(herwis)e‘

whered = ged(k, m), andj is the unique integer such
that0 < j < ¢ — 2 andr = w’ with w a primitive

l—apk

element off, andr =
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Proof

The assertion Is obvious far= 1. Fora # 1, we
have

ar” + (¥ — 1)z = 0.

It Is obvious thatr = 0 Is a solution of the above
equation. For: ## 0 the above equation becomes

2P =1 = r_wherer = 1_§pk £ 0. If w is a primitive
element off, andr = w’ for somej, 0 < j < g — 2,
then we havey®*~1 = 7 which implies that

i(p* — 1) = j mod (¢ — 1), which has exactly
ged(ph — 1,p™ — 1) = peedkm) _ 1 solutions if and
only if p* — 1 dividesj.
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Fixed Points

The number of fixed points of the permutations
03(z,a) = az” + a’z® + (a” + a)z for a € F} is given
by

|

Fix(ds(x,a)) = { 3
9

depending on the number of solutions of the equation
ar’ + a’z® + (¢’ +a — 1)z = 0.
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Fixed Points

The number of fixed points of the permutations
03(z,a) = ax” — a’z’ + (a” + a)z for a € F} is given
by

|

Fix(ds(x,a)) = { 3
9

depending on the number of solutions of the equation
ar’ — a’x® + (a’ +a — 1)z = 0.
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Remark

If f5(x) = 2", wheren = Bk;l the Coulter-Mattews

perfect nonlinear function, whereis odd,
ged(k,m) = 1. andp = 3. Computations show that

the difference permutation function
05(x,1) = (x +1)" — 2"

has exactly 1 or 3 fixed points for many values:of
But we have no proof of it up till now.
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On the cycles structure of the permutation
pOlynOmia|S51, 09, 03, andoy.
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Cycles of),

o If a = % all cycles of length one and the total
number of cycles 19" .

- If a # %, one cycle of length 1 and all other
cycles of lengthord(2a) and the total number of

n—1

cycles is-- o T 1
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Examples

a | Cycle Length | # Cycles
| 1 1

3 274514
4 1 823543
. 1 1

§ 137257

Table 1: The cycle structure atix overl-
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Cycles ofo,, 03, 04

Let L(z) € F,|z] be a linearized polynomial on the
form

m—1

L(x) = Z a;z”

1=0
where eacly; € IF, andm > 1. Consider the operator
T : 2 — z? defined orff . Leth(z) = Y7 " a;a°
with a; € F,. ThenL(z) given in (1) can be written in
the formL(z) = h(T)(x), where
W(T)(2) = (Lim) aT?) (x) = $i) a/T'(x) and

T"(x) is the composition of " (z) with itself i times.
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Cycles ofo,, 03, 04

It is known that a subspad&’” of IF, Is said to be
T-invarient subspace if (1) C W. W is T-invarient
subspace of,~ if and only if W = ker ¢g(7T") the
kernal ofg(7"), whereg(z) € F)|z], g(x)|xz™ — 1, and
dim W= degreegy(z).
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Cycles ofo,, 03, 04

Consider the canonical factorizationof — 1 as
[
L, (ZEml _ 1)pt _ Hgi(x)pta
1=1

wherem = p'm; with (mq,p) = 1 andg;(x) is an
Irreducible polynomial oveF, of degreek;. SetlV; =

ker(g:(T)) andW ) = ker(g;(T)?), then we have

[
Fpm _ 69 Wi(pt)

p=
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Cycles ofo,, 03, 04

Require: The linearized permutation polynomial
L(z) = Y"1 a;z”, a; € F,.
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Cycles ofo,, 03, 04

Require: The linearized permutation polynomial
L(z) = Y"1 a;z”, a; € F,.

Ensure: The lengths and the numbers of the cycles
for eachlV;, the T-invarient subspace &f» with

ged(p,m) = 1.
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Cycles ofo,, 03, 04

1:
2.

Defineh(x) = Y7 " ;.

Factorize(z™ — 1) as(z” — 1) = [[._, gi(),
where eacly;(x) is an irreducible polynomial
over[F, with degreek;.
for 1 =1toldo
Find a rootw of g;(z) in IF .
Calculateh(w) in IF ;.
Find j; the multiplicative order ofi(w) In IF 4,
which is the cycle length.

Calculatec; = Pt - L which is the number of the

cycles of lengthy;.
end for
return all 5;'s andg;’s.
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Magma program

/* cycles structure Algorithm 1 */
algorithm1:=procedure(p,n)
g<w>:=GF(p,n);
L<x>:=PolynomialRing(GF(p));
h<x>:=PolynomialRing(GF(p));
printf"Enter the coefficient of h(x) a0.....a%o0\n",n-1;
s:=[1;

for 1:= 0 to n-1 do

printf "a%o=",1;

readi a;

Append(~s,a);

end for;

h:=h!s;

h;

g:={ @f[1]:f in Factorization(x*n-1 )@ };
J:=AssociativeArray();
c:=AssociativeArray();

for 1:=1 to #g do

k:=Degree(g[i]);

w:={@r[1] : r in Roots(g[1],GF(p,k)) @ };
hw:=Evaluate(h,w[1]);

j[1]:=Order(hw);

clil:=(p"k-1)/jlil;

printf "j%0=%0 c%0=%o0 \n", 1,j[i],1,c[1];
end for;

end procedure;
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Examples for o,

2 a Cycle Length | # Cycles
1 1
Fao | 1 2 4
40 1476
1 1
Fos | 5 § 1
240 70
1 1
Fi13 | 10 ) 10
D 2
15 80

Table 2: The cycles structure of?" + af z.
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Examples for s and o,

Dif. Function a Cycle Length | # Cycles
1 1
0a = ax® — a3z3 + a(ad® + 1)z 1 . !
6 4
18 1092
1 3
-1 3 8
9 PARSY!
1 9
03 = ax® + a3z3 + a(a® + 1)z 1 3 240
9 2106
1 1
4 2 4
6 120
18 1053

Table 3: The cycles structure 0f:” F ax3 + a(a® + 1)z.
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Cycles ofo,, 03, 04

Now any element € [F, can be uniquely represented

as
Q=01+ ay+ ...+ q,

whereq; € W, and the length of the cycle that
containsy can be determined as

Cla)| = lem(jr, J2, -5 1)

Notice that ifa; = 0 for some element € [, then
7; = 1 In this case.
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CadstCo liave Ui salllce Hulrlrpel Ul
cycles of the same length

Definition 3 L; and L, are said to be If as
permutations they have the same number of cycles of
the same length ovéf,~, we writeL; ~ L.

Definition 4 L, and L, are said to be
If for every T-invarient subspadé” of ',

the restrictionsL; |/W and Ly | induce the same
number of cycles of the same lengtiin This is
denoted by.; ~ L.
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CadstCo liave Ui salllce Hulrlrpel Ul
cycles of the same length

In this case); (x, a) have the same number of cycles
of the same length for different valuesohave the
sameord(2a).
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CadstCo liave Ui salllce Hulrlrpel Ul
cycles of the same length

Theorem 5 Let L;(z) = 2" + x and

Lo(x) = aP? + 2. If sy = p°sy  (mod n), for some
0 < s <m—1thenL;(z) is strongly equivalent to
Lo(x) overFm.
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CadstCo liave Ui salllce Hulrlrpel Ul
cycles of the same lengthes

Theorem 6 Let
L(z) = az’ F a’z® + a(a® + 1)z,wherea € {1, —1}.
If m = 3" then the cycles lengthes ate3’ where

Z._{0 L(1) =1,
1 L) =-1.

and; =0,1,... k.

—n. 29/31



Further work

Study the same for the CM function:

f(z) = 2B3"+D/2 overFs» whereged(n, k) = 1 and
k > 3is odd,
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Further work

Let f(x) = =" be a perfect nonlinear function oviy.
Letd(x,a) = (x + a)” — x" be its permutation.

1. How many fixed points are there fo?

2. What about the cycles structurext
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