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Quantum Codes

• QUANTUM CODES:
The construction of quantum error-correcting codes (QEC) is
strongly dependent on the properties of the classical linear codes.
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Quantum Codes

• QUANTUM CODES:
The construction of quantum error-correcting codes (QEC) is
strongly dependent on the properties of the classical linear codes.

• A PARTICULAR APPROACH OF QUANTUM CODES:
The topological quantum error-correcting codes (TQC) make the
quantum states to depend on topological properties of a physical

system. This is a form of realizing fault-tolerant quantum compu-
tation, because topological properties are invariant under smooth

degradations.
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Quantum Codes

• QUANTUM CODES:
The construction of quantum error-correcting codes (QEC) is
strongly dependent on the properties of the classical linear codes.

• A PARTICULAR APPROACH OF QUANTUM CODES:
The topological quantum error-correcting codes (TQC) make the
quantum states to depend on topological properties of a physical

system. This is a form of realizing fault-tolerant quantum compu-
tation, because topological properties are invariant under smooth

degradations.

• TORIC CODES:
Kitaev proposes the class of toric codes, a subclass of the sta-

bilizer quantum codes associated with the square lattice of torus
Z

2.
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Proposal

• PROPOSAL:
It is possible to generate toric quantum codes by means of tes-

sellations of square lattice of torus by translations of a determined
fundamental region.
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Stabilizer Codes

• Pauli group of n qubits:

Pn = ±{I, σx, σy, σz}⊗n.

I ≡

"

1 0

0 1

#

, σx ≡
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1 0

#
, σy ≡
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i 0
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1 0
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• Pauli group of n qubits:
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"
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0 1

#
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"
0 1

1 0

#
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"
0 −i
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#
, σz ≡

"
1 0

0 −1

#

.

• Properties:

◦ For each M ∈ Pn, we have M2 = ±I;
◦ If M2 = I, then M is Hermitian; if M2 = −I, then M is

anti-Hermitian.
◦ M,N ∈ Pn ⇒MN = NM or MN = −NM .
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Stabilizer Codes

• Let S be an Abelian subgroup of Pn called stabilizer group.
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Stabilizer Codes

• Let S be an Abelian subgroup of Pn called stabilizer group.

• The elements of S are called stabilizer operators.



•Presentation Outline

Introduction

Stabilizer Codes

•Stabilizer Codes

•Stabilizer Codes

•Stabilizer Codes

Known Toric Quantum Codes

New Toric Quantum Codes

Conclusions

Fq9 - 07/15/2009 Construction of New Toric Quantum Codes - slide #8

Stabilizer Codes

• Let S be an Abelian subgroup of Pn called stabilizer group.

• The elements of S are called stabilizer operators.

• A stabilizer code CS ⊆ H associated to S is the
simultaneous eigenspace, with eigenvalue +1, comprising
all elements of an Abelian subgroup S

CS = {|ψ〉; M |ψ〉 = |ψ〉 ∀M ∈ S}.
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Stabilizer Codes

• If S has n− k generators, then the dimension of CS is 2k.
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Stabilizer Codes

• If S has n− k generators, then the dimension of CS is 2k.

• The generators of S can be viewed as the parity-check
operators of a quantum code

◦ E ∈ Pn commute with every Mi ∈ S ⇒ no error is
detected.

◦ E ∈ Pn anti-commute with any Mi ∈ S ⇒ the error is
detected.
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• If S has n− k generators, then the dimension of CS is 2k.

• The generators of S can be viewed as the parity-check
operators of a quantum code

◦ E ∈ Pn commute with every Mi ∈ S ⇒ no error is
detected.

◦ E ∈ Pn anti-commute with any Mi ∈ S ⇒ the error is
detected.

• The operators of Pn which commute with every Mi ∈ S but
do not belong to S, preserve the coding space CS , by not
acting trivially on it.
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Stabilizer Codes

• If S has n− k generators, then the dimension of CS is 2k.

• The generators of S can be viewed as the parity-check
operators of a quantum code

◦ E ∈ Pn commute with every Mi ∈ S ⇒ no error is
detected.

◦ E ∈ Pn anti-commute with any Mi ∈ S ⇒ the error is
detected.

• The operators of Pn which commute with every Mi ∈ S but
do not belong to S, preserve the coding space CS , by not
acting trivially on it.

• The code distance is given by the least weight of E ∈ Pn

such that E commutes with every Mi ∈ S but does not
belong to S.
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Kitaev’s Toric Codes

• Qubits ↔ edges of the tessellation {4, 4} of the two
dimensional torus.

f

v
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• Qubits ↔ edges of the tessellation {4, 4} of the two
dimensional torus.
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• Square lattice m×m⇒ n = 2m2 and k = 2.
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Kitaev’s Toric Codes

• Qubits ↔ edges of the tessellation {4, 4} of the two
dimensional torus.

f

v

• Square lattice m×m⇒ n = 2m2 and k = 2.

• Stabilizer operators:

Av =
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j∈Ev
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Kitaev’s Toric Codes

• Qubits ↔ edges of the tessellation {4, 4} of the two
dimensional torus.

f

v

• Square lattice m×m⇒ n = 2m2 and k = 2.

• Stabilizer operators:

Av =

O
j∈Ev

σ
j
x Bf =

O

j∈Ef

σ
j
z .

• C = {|ψ〉 : Av|ψ〉 = |ψ〉, Bf |ψ〉 = |ψ〉 ∀ v, f}.
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Kitaev’s Toric Codes

• The toric codes detect d− 1 errors and correct ⌊ d−1

2
⌋

errors.
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Kitaev’s Toric Codes

• The toric codes detect d− 1 errors and correct ⌊ d−1

2
⌋

errors.

• The distance is the number of edges contained in the
shortest homologically nontrivial cycle on the tessellation or
dual tessellation. Hence d = m.

C

C’

C(1,f)
C(2,v)

c

C(1,v)C(2,f)
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Kitaev’s Toric Codes

• The toric codes detect d− 1 errors and correct ⌊ d−1

2
⌋

errors.

• The distance is the number of edges contained in the
shortest homologically nontrivial cycle on the tessellation or
dual tessellation. Hence d = m.

C

C’

C(1,f)
C(2,v)

c

C(1,v)C(2,f)

• [[2m2, 2,m]].



•Presentation Outline

Introduction

Stabilizer Codes

Known Toric Quantum Codes

•Kitaev’s Toric Codes

•Kitaev’s Toric Codes

•Algebraic interpretation

•Bombin and

Martin-Delgado’s Codes

New Toric Quantum Codes

Conclusions

Fq9 - 07/15/2009 Construction of New Toric Quantum Codes - slide #13

Algebraic interpretation

• Kitaev’s code may be characterized as the set of cosets of
Z

2/mZ
2 ∼= Zm × Zm.
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Algebraic interpretation

• Kitaev’s code may be characterized as the set of cosets of
Z

2/mZ
2 ∼= Zm × Zm.

• The identifications of the opposite edges of the region
delimited by Zm × Zm result in the identification with the flat
torus.
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Algebraic interpretation

• Kitaev’s code may be characterized as the set of cosets of
Z

2/mZ
2 ∼= Zm × Zm.

• The identifications of the opposite edges of the region
delimited by Zm × Zm result in the identification with the flat
torus.

• The area associated with the lattice Zm × Zm is m2. Thus,
there are 2m2 edges, that is, n = 2m2 qubits.
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Algebraic interpretation

• Kitaev’s code may be characterized as the set of cosets of
Z

2/mZ
2 ∼= Zm × Zm.

• The identifications of the opposite edges of the region
delimited by Zm × Zm result in the identification with the flat
torus.

• The area associated with the lattice Zm × Zm is m2. Thus,
there are 2m2 edges, that is, n = 2m2 qubits.

• The qubits to be encoded are related to the essential cycles
of the surface (meridian and parallel), therefore, k = 2.
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Algebraic interpretation

• Kitaev’s code may be characterized as the set of cosets of
Z

2/mZ
2 ∼= Zm × Zm.

• The identifications of the opposite edges of the region
delimited by Zm × Zm result in the identification with the flat
torus.

• The area associated with the lattice Zm × Zm is m2. Thus,
there are 2m2 edges, that is, n = 2m2 qubits.

• The qubits to be encoded are related to the essential cycles
of the surface (meridian and parallel), therefore, k = 2.

• The minimum distance of the code corresponds to the least
number of edges in the dual lattice to be covered between
the coset representatives, d = m.
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Bombin and Martin-Delgado’s Codes

• Another regular lattice of the torus:
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Bombin and Martin-Delgado’s Codes

• Another regular lattice of the torus:

X X

X X

X
X

X

X

X

X

X

• m two dimensional Lee spheres with radius r may be used
to tessellate the torus Zm × Zm, where m = 2r2 + 2r + 1
and r = 1, 2, . . ..
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Bombin and Martin-Delgado’s Codes

• Another regular lattice of the torus:

X X

X X

X
X

X

X

X

X

X

• m two dimensional Lee spheres with radius r may be used
to tessellate the torus Zm × Zm, where m = 2r2 + 2r + 1
and r = 1, 2, . . ..

• The length of the code n is the number of edges of the Lee
spheres and the minimum distance of the code is the
radius r of Lee spheres.
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Bombin and Martin-Delgado’s Codes

• Another regular lattice of the torus:

X X

X X

X
X

X

X

X

X

X

• m two dimensional Lee spheres with radius r may be used
to tessellate the torus Zm × Zm, where m = 2r2 + 2r + 1
and r = 1, 2, . . ..

• The length of the code n is the number of edges of the Lee
spheres and the minimum distance of the code is the
radius r of Lee spheres.

• This system of lattices supplies codes with parameters
[[d2 + 1, 2, d]] and keep the same properties of the original
Kitaev’s code.
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New Toric Quantum Codes
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Lattices, Quadratic Forms and Polyominoes

• The lattice Z
2 is generated by vectors ν1 = (1, 0) and

ν2 = (0, 1), with fundamental region described by a square,
with area equal to 1, and its corresponding quadratic form
is x2 + y2.
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Lattices, Quadratic Forms and Polyominoes

• The lattice Z
2 is generated by vectors ν1 = (1, 0) and

ν2 = (0, 1), with fundamental region described by a square,
with area equal to 1, and its corresponding quadratic form
is x2 + y2.

• A polyomino is the domino generalization.
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Lattices, Quadratic Forms and Polyominoes

• The lattice Z
2 is generated by vectors ν1 = (1, 0) and

ν2 = (0, 1), with fundamental region described by a square,
with area equal to 1, and its corresponding quadratic form
is x2 + y2.

• A polyomino is the domino generalization.

• A close-packed code corresponds to any tessellation of an
m×m torus by translations of a given polyomino.



•Presentation Outline

Introduction

Stabilizer Codes

Known Toric Quantum Codes

New Toric Quantum Codes

•Lattices, Quadratic Forms

and Polyominoes
•Algebraic Approach

•Algebraic Approach

•Parameters of the Codes

•Shape of the Polyomino

• [[d2 + 1, 2, d]]
codes

• [[2d2, 2, d]] codes

•New Class of Toric Codes

Conclusions

Fq9 - 07/15/2009 Construction of New Toric Quantum Codes - slide #16

Lattices, Quadratic Forms and Polyominoes

• The lattice Z
2 is generated by vectors ν1 = (1, 0) and

ν2 = (0, 1), with fundamental region described by a square,
with area equal to 1, and its corresponding quadratic form
is x2 + y2.

• A polyomino is the domino generalization.

• A close-packed code corresponds to any tessellation of an
m×m torus by translations of a given polyomino.

• Lee spheres are a special type of polyominoes that was
used to generate perfect classical codes and the class of
[[d2 + 1, 2, d]] quantum codes.
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Algebraic Approach

• Consider the quotient group Z
2/mZ

2 ∼= Zm × Zm.
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Algebraic Approach

• Consider the quotient group Z
2/mZ

2 ∼= Zm × Zm.

• Regular tessellations of m×m torus given by translations
of a determined polyomino may be used to define a toric
code.
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• The area of the polyomino has to divide the area of lattice,
m2.
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• Regular tessellations of m×m torus given by translations
of a determined polyomino may be used to define a toric
code.

• The area of the polyomino has to divide the area of lattice,
m2.

• Consider the cases when the area of the polyomino is m.
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Algebraic Approach

• Consider the quotient group Z
2/mZ

2 ∼= Zm × Zm.

• Regular tessellations of m×m torus given by translations
of a determined polyomino may be used to define a toric
code.

• The area of the polyomino has to divide the area of lattice,
m2.

• Consider the cases when the area of the polyomino is m.

• A systematic approach to tessellate the lattice Zm × Zm, is
to determine the cosets, X.
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Algebraic Approach

• Consider the quotient group Z
2/mZ

2 ∼= Zm × Zm.

• Regular tessellations of m×m torus given by translations
of a determined polyomino may be used to define a toric
code.

• The area of the polyomino has to divide the area of lattice,
m2.

• Consider the cases when the area of the polyomino is m.

• A systematic approach to tessellate the lattice Zm × Zm, is
to determine the cosets, X.

• X → (x, y) ∈ Zm × Zm indicates the place of a polyomino.
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Algebraic Approach

• The set of representatives of polyominoes, A, corresponds
to a classical lattice code.
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• The set of representatives of polyominoes, A, corresponds
to a classical lattice code.

• A is a subgroup of (Zm × Zm,+).
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Algebraic Approach

• The set of representatives of polyominoes, A, corresponds
to a classical lattice code.

• A is a subgroup of (Zm × Zm,+).

• To get a polyomino with area m, the cardinality of A must
be m, |A| = m.
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Algebraic Approach

• The set of representatives of polyominoes, A, corresponds
to a classical lattice code.

• A is a subgroup of (Zm × Zm,+).

• To get a polyomino with area m, the cardinality of A must
be m, |A| = m.

• The quadratic form of the lattice Zm × Zm will be used to
find the lattice vectors (x, y) ∈ A

x2 + y2 = m.
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Algebraic Approach

• The set of representatives of polyominoes, A, corresponds
to a classical lattice code.

• A is a subgroup of (Zm × Zm,+).

• To get a polyomino with area m, the cardinality of A must
be m, |A| = m.

• The quadratic form of the lattice Zm × Zm will be used to
find the lattice vectors (x, y) ∈ A

x2 + y2 = m.

• Since we wish that |A| = m, we have:
◦ gcd(x, y) = 1 ⇒ A = 〈(x, y)〉.
◦ gcd(x, y) = δ 6= 0, 1 ⇒ A = 〈(x, y), (−y, x)〉.
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Parameters of the Codes

• Once the subspace given by the representatives is known,
it is possible to choose the polyominoes that may tessellate
the lattice.
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Parameters of the Codes

• Once the subspace given by the representatives is known,
it is possible to choose the polyominoes that may tessellate
the lattice.

• The quantum code associated to this tessellation is defined
as:
◦ n = number of edges of the polyomino = 2m.

◦ k = 2.

◦ The minimum code distance is given by the shortest
distance between two representatives of the
polyominoes. Therefore

d = dM = |x|+|y|,

where dM is the Mannhein distance.

◦ [[2m, 2, dM ]].
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Shape of the Polyomino

• It is possible to tessellate the same Z
2

m lattice by different
polyominoes, without modifying the generated quantum
code.
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• It is possible to tessellate the same Z
2

m lattice by different
polyominoes, without modifying the generated quantum
code.

• The shape of the polyomino influences the error correction
pattern.
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Shape of the Polyomino

• It is possible to tessellate the same Z
2

m lattice by different
polyominoes, without modifying the generated quantum
code.

• The shape of the polyomino influences the error correction
pattern.

• The optimum shape for the polyomino depends on the type
of graph associated with the discrete channel without
memory.
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Shape of the Polyomino

• It is possible to tessellate the same Z
2

m lattice by different
polyominoes, without modifying the generated quantum
code.

• The shape of the polyomino influences the error correction
pattern.

• The optimum shape for the polyomino depends on the type
of graph associated with the discrete channel without
memory.

• This shape may generally be considered as the union of a
square x× x with a square y × y.
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[[d2 + 1, 2, d]] codes

• When m = 2t2 + 2t+ 1, for t = 1, 2, 3, . . ., Bombin and
Martin-Delgado’s codes are reproduced.
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[[d2 + 1, 2, d]] codes

• When m = 2t2 + 2t+ 1, for t = 1, 2, 3, . . ., Bombin and
Martin-Delgado’s codes are reproduced.

• m = (t+ 1)2 + t2 ⇒ x = (t+ 1) and y = t⇒ A = 〈(x, y)〉.
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[[d2 + 1, 2, d]] codes

• When m = 2t2 + 2t+ 1, for t = 1, 2, 3, . . ., Bombin and
Martin-Delgado’s codes are reproduced.

• m = (t+ 1)2 + t2 ⇒ x = (t+ 1) and y = t⇒ A = 〈(x, y)〉.
• d = |t+ 1| + |t| = 2t+ 1
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[[d2 + 1, 2, d]] codes

• When m = 2t2 + 2t+ 1, for t = 1, 2, 3, . . ., Bombin and
Martin-Delgado’s codes are reproduced.

• m = (t+ 1)2 + t2 ⇒ x = (t+ 1) and y = t⇒ A = 〈(x, y)〉.
• d = |t+ 1| + |t| = 2t+ 1

• n = 2m = d2 + 1
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[[d2 + 1, 2, d]] codes

• When m = 2t2 + 2t+ 1, for t = 1, 2, 3, . . ., Bombin and
Martin-Delgado’s codes are reproduced.

• m = (t+ 1)2 + t2 ⇒ x = (t+ 1) and y = t⇒ A = 〈(x, y)〉.
• d = |t+ 1| + |t| = 2t+ 1

• n = 2m = d2 + 1

• [[d2 + 1, 2, d]].
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[[d2 + 1, 2, d]] codes

• When m = 2t2 + 2t+ 1, for t = 1, 2, 3, . . ., Bombin and
Martin-Delgado’s codes are reproduced.

• m = (t+ 1)2 + t2 ⇒ x = (t+ 1) and y = t⇒ A = 〈(x, y)〉.
• d = |t+ 1| + |t| = 2t+ 1

• n = 2m = d2 + 1

• [[d2 + 1, 2, d]].

• Example: m = 5 ⇒ A = 〈(2, 1)〉. Code [[10, 2, 3]] is obtained.
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[[2d2, 2, d]] codes

• When m is a perfect square, the Kitaev’s codes are
reproduced.
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[[2d2, 2, d]] codes

• When m is a perfect square, the Kitaev’s codes are
reproduced.

• m = x2 + y2 ⇒ x = ±√
m, y = 0 ⇒ A = 〈(√m, 0), (0,√m)〉.
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[[2d2, 2, d]] codes

• When m is a perfect square, the Kitaev’s codes are
reproduced.

• m = x2 + y2 ⇒ x = ±√
m, y = 0 ⇒ A = 〈(√m, 0), (0,√m)〉.

• d = |√m|
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[[2d2, 2, d]] codes

• When m is a perfect square, the Kitaev’s codes are
reproduced.

• m = x2 + y2 ⇒ x = ±√
m, y = 0 ⇒ A = 〈(√m, 0), (0,√m)〉.

• d = |√m|
• n = 2m = 2d2
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[[2d2, 2, d]] codes

• When m is a perfect square, the Kitaev’s codes are
reproduced.

• m = x2 + y2 ⇒ x = ±√
m, y = 0 ⇒ A = 〈(√m, 0), (0,√m)〉.

• d = |√m|
• n = 2m = 2d2

• [[2d2, 2, d]].
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[[2d2, 2, d]] codes

• When m is a perfect square, the Kitaev’s codes are
reproduced.

• m = x2 + y2 ⇒ x = ±√
m, y = 0 ⇒ A = 〈(√m, 0), (0,√m)〉.

• d = |√m|
• n = 2m = 2d2

• [[2d2, 2, d]].

• Example: m = 4 ⇒ A = {(0, 0), (2, 0), (0, 2), (2, 2)}. Code
[[8, 2, 2]] is obtained.
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New Class of Toric Codes

• When m = x2 + x2, we have A = 〈(x, x), (−x, x)〉.
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New Class of Toric Codes

• When m = x2 + x2, we have A = 〈(x, x), (−x, x)〉.
• d = 2x and n = 2m = d2.
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New Class of Toric Codes

• When m = x2 + x2, we have A = 〈(x, x), (−x, x)〉.
• d = 2x and n = 2m = d2.

• [[d2, 2, d]].
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New Class of Toric Codes

• When m = x2 + x2, we have A = 〈(x, x), (−x, x)〉.
• d = 2x and n = 2m = d2.

• [[d2, 2, d]].

• k/n = 1/d.
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New Class of Toric Codes

• When m = x2 + x2, we have A = 〈(x, x), (−x, x)〉.
• d = 2x and n = 2m = d2.

• [[d2, 2, d]].

• k/n = 1/d.

• Example: m = 8 ⇒
A = {(0, 0), (2, 2), (4, 4), (6, 6), (6, 2), (2, 6), (0, 4), (4, 0)}.
Code [[16, 2, 4]] is obtained.
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Conclusions
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Conclusions

• Through an algebraic approach it is possible to use the
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concept of polyomino to generate toric quantum codes by
means of tessellations of square lattice of torus by
translations of this polyomino;

• The codes defined in this way keep the same properties of
Kitaev’s toric codes;
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Conclusions

• Through an algebraic approach it is possible to use the
concept of polyomino to generate toric quantum codes by
means of tessellations of square lattice of torus by
translations of this polyomino;

• The codes defined in this way keep the same properties of
Kitaev’s toric codes;

• Besides reproducing known classes of codes, new classes
of toric codes are determined. For instance, the class
[[d2, 2, d]], the best known so far.
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