Multiplicative Order of Gauss Periods

Omran Ahmadi¹ Igor Shparlinski² Jose Felipe Voloch³

¹CSI, UCD

²Macquarie University

³University of Texas at Austin

July 17, 2009, \mathbb{F}_{q^9}

・ロト ・ 一下・ ・ ヨト・

-∃=->

Main strategy

イロト イポト イヨト イヨト

1, Notations

Some Notations

- \mathbb{F}_q is the finite field with *q* elements for a prime power *q*.
- \mathbb{F}_{q^n} is the degree *n* extension of \mathbb{F}_q .
- Generators of \mathbb{F}_a^* are called primitive elements.

Main strategy

2

Open Question

Find an efficient algorithm for constructing primitive elements in finite fields.

- An algorithm is efficient if its running time is (log qⁿ)^{O(1)} arithmetic operations in F_{qⁿ}.
- In many applications (Diffie-Hellman key establishment, pseudorandom bit generations, ...) a primitive element is needed.

Main strategy

イロト イ理ト イヨト イヨト

3, Main Strategies

- Find a small subset S ⊂ F_q containing a primitive element. (Distribution result) (quite efficient assuming GRH)
- 2 Test the elements of *S* to find a primitive element.

Main strategy

4, Testing primitiveness

- (Naive) Compute all the powers of $\alpha \in \mathbb{F}_q$.
- α is primitive iff $\alpha^{(q-1)/d} \neq 1$ for every prime d|q-1.
- (Bottleneck) Factorization (Subexponential time algorithm).
- Running time of number field sieve O(exp((c + o(1))(ln q)^{1/3}(ln ln q)^{2/3})) bit operations.(Best asymptotic running time)

Main Idea Examples Order of Gauss Periods

< □ > < □ > < □ > < □ > <

5, Relaxation of Primitive Element Problem

- In many application we need an element of large order.
- Given 𝔽_q, it suffices to construct primitive element for 𝔽_{qⁿ} where *n* is in the some large subset of the positive integers.

6, Main Idea

An element of F_{qⁿ} which is not in any subfield has minimal polynomial of degree *n* over F_q.

Main Idea

- If $f(\alpha) = 0$, then $f(\alpha^q) = 0$.
- Powers of an element and its degree are related through its minimal polynomial.

イロト イポト イヨト イヨト

• AKS Deterministic Primality Testing Algorithm

Main Idea Examples Order of Gauss Periods

7, Qi Cheng's Result

Theorem (Q. Cheng, 2004)

Let q be a fixed prime power and let N be a positive integer. Then in time polynomial in N an integer $n \in [N, 2qN]$ and $\alpha \in \mathbb{F}_{q^n}$ being of order at least 5.8^{*n*/log_q *n*} can be found.

Theorem (Q. Cheng, 2004)

Let q be a fixed prime power and let N be a positive integer. Then in time polynomial in N an integer $n \in [N, N + O(N^{0.77})]$ and $\alpha \in \mathbb{F}_{q^n}$ being of order at least 5.8 \sqrt{n} can be found.

Main Idea Examples Order of Gauss Periods

イロト イヨト イヨト イ

8, Main Idea and Proof

- Lemma: Let *q* be a prime power and let *n*|*q* − 1.If
 xⁿ − *u* ∈ 𝔽_{*q*}[*x*] is an irreducible polynomial over 𝔽_{*q*} and
 α ∈ 𝔽_{*qⁿ*} is one of its roots, Then for any *a* ∈ 𝔽^{*}_{*q*}, *α* + *a* has order greater than 5.8^{*n*}.
- Conjugates of α are c₁α, c₂α,..., c_nα where c_i's are n-th roots of unity in F_q.
- Conjugates of $\alpha + a$ are $c_i \alpha + a$'s.

Main Idea Examples Order of Gauss Periods

ヘロト 人間 とくほとくほとう

9, Proof

- Let e_i 's be positive integers such that $\sum e_i \leq n 1$.
- Take the elements $(\alpha + a)^{\sum e_i q^i} \in \mathbb{F}_{q^n}$.
- $(\alpha + a)^{\sum e_i q^i} = \prod (\alpha + a)^{e_i q^i} = \prod (c_i \alpha + a)^{e_i}.$
- If ∏(c_iα + a)^{e_i} = ∏(c_iα + a)^{f_i}, then the degree of α ≤ n.(a contradiction)
- α becomes a root of $\prod (c_i x + a)^{e_i} \prod (c_i x + a)^{f_i}$.

Main Idea Examples Order of Gauss Periods

10, Gauss Periods

Definition

Let r = 2n + 1 be a prime number coprime with q and $\beta \in \mathbb{F}_{q^{2n}}$ be a primitive r-th root of unity. Then the element

$$\alpha = \beta + \beta^{-1} \in \mathbb{F}_{q^n} \tag{1}$$

is called a Gauss period of type (n, 2).

Theorem

If q is a primitive root modulo r, and α is a Gauss period, then $NB = \left\{ \alpha, \alpha^{q}, \dots, \alpha^{q^{n-1}} \right\}$ is a normal basis for $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} . In this case, the minimal polynomial of β is of degree 2n.

Main Idea Examples Order of Gauss Periods

11, Orders of Gauss periods

Theorem (I. Shparlinski and J. von zur Gathen, 1998)

Let p be the characteristic of \mathbb{F}_q and let q be a primitive root modulo a prime r = 2n + 1 and β be a primitive r-th root of unity in $\mathbb{F}_{q^{2n}}$. Then the multiplicative order of $\alpha = \beta + \beta^{-1}$ is at least

$$2^{\sqrt{2n}}$$
.

Theorem (ASV)

With the assumptions as above the multiplicative order of α is at least

$$P(n-1, p-1)$$
.

P(m, k) is the number of integer partitions of *m* where no part appears more than *k* times.

Main Idea Examples Order of Gauss Periods

12, Orders of Gauss Periods

Corollary (ASV)

Assuming everything as the last theorem the multiplicative order of α is at least

$$\exp\left(\left(\pi\sqrt{\frac{2(p-1)}{3p}}+o(1)\right)\sqrt{n}
ight),$$

as $n \to \infty$.

- When p > n, the order of α is at least $13^{\sqrt{n}}$.
- When p = 2, the order of α is at least 6.13 \sqrt{n} .

Main Idea Examples Order of Gauss Periods

13, Proof

•
$$\mathfrak{P} = \Big\{ (u_1, \ldots, u_{n-1}) \mid \sum_{j=1}^{n-1} u_j j = n-1, \ 0 \leq u'_j s \leq p-1 \Big\}.$$

- Let q^{z_j} ≡ j (mod r), 0 ≤ z_j < r. (q is a primitive root modulo r)
- If $(u_1, ..., u_{n-1}), (v_1, ..., v_{n-1}) \in \mathfrak{P}$ and $(u_1, ..., u_{n-1}) \neq (v_1, ..., v_{n-1})$, then $\alpha^{\sum u_i q^{z_i}} \neq \alpha^{\sum v_i q^{z_i}}$. • $\alpha^{\sum u_i q^{z_i}} = \prod (\beta^{q^{z_i}} + \beta^{-q^{z_i}})^{u_i} = \prod (\beta^i + \beta^{-i})^{u_i} = \prod (\beta^{z_i} + \beta^{-i})^{u_i}$
- $\alpha \sum a_i a_i \gamma^{\prime} = \prod (\beta^{q_i} + \beta^{-q_i})^{a_i} = \prod (\beta^{\prime} + \beta^{-\prime})^{a_i} = \beta^{n-1} \prod (\beta^{2i} + 1)^{u_i}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Main Idea Examples Order of Gauss Periods

14, Applying Polynomial ABC Theorem

•
$$\alpha^{\sum v_i q^{z_i}} = \beta^{n-1} \prod (\beta^{2i} + 1)^{v_i}$$

• If $\alpha^{\sum u_i q^{z_i}} = \alpha^{\sum v_i q^{z_i}}$, then $\prod (\beta^{2i} + 1)^{u_i} = \prod (\beta^{2i} + 1)^{v_i}$.

• *β* is of degree 2*n*.(A contradiction)

Theorem (Polynomial ABC theorem)

Let A, B, C be nonzero polynomials over \mathbb{F}_q with A + B + C = 0and gcd(A, B, C) = 1. If deg $A \ge deg rad ABC$, then A' = 0.

• Using ABC we can beat GS bound but still unable to beat the partition bound.

Outlook

• Get similar bound for other types of Gauss periods.

イロン 不得 とくほ とくほとう

3

• Apply polynomial ABC theorem.