Multiplicative Order of Gauss Periods

Omran Ahmadi ${ }^{1}$ Igor Shparlinski ${ }^{2}$ Jose Felipe Voloch ${ }^{3}$

${ }^{1} \mathrm{CSI}, \mathrm{UCD}$
${ }^{2}$ Macquarie University
${ }^{3}$ University of Texas at Austin

July 17, 2009, $\mathbb{F}_{q^{9}}$

1, Notations

Some Notations

- \mathbb{F}_{q} is the finite field with q elements for a prime power q.
- $\mathbb{F}_{q^{n}}$ is the degree n extension of \mathbb{F}_{q}.
- Generators of \mathbb{F}_{q}^{*} are called primitive elements.

Open Question

Find an efficient algorithm for constructing primitive elements in finite fields.

- An algorithm is efficient if its running time is $\left(\log q^{n}\right)^{O(1)}$ arithmetic operations in $\mathbb{F}_{q^{n}}$.
- In many applications (Diffie-Hellman key establishment, pseudorandom bit generations, ...) a primitive element is needed.

3, Main Strategies

(1) Find a small subset $S \subset \mathbb{F}_{q}$ containing a primitive element. (Distribution result) (quite efficient assuming GRH)
(2) Test the elements of S to find a primitive element.

4,Testing primitiveness

- (Naive) Compute all the powers of $\alpha \in \mathbb{F}_{q}$.
- α is primitive iff $\alpha^{(q-1) / d} \neq 1$ for every prime $d \mid q-1$.
- (Bottleneck) Factorization (Subexponential time algorithm).
- Running time of number field sieve $O\left(\exp \left((c+o(1))(\ln q)^{1 / 3}(\ln \ln q)^{2 / 3}\right)\right)$ bit operations. (Best asymptotic running time)

5, Relaxation of Primitive Element Problem

- In many application we need an element of large order.
- Given \mathbb{F}_{q}, it suffices to construct primitive element for $\mathbb{F}_{q^{n}}$ where n is in the some large subset of the positive integers.

6, Main Idea

- An element of $\mathbb{F}_{q^{n}}$ which is not in any subfield has minimal polynomial of degree n over \mathbb{F}_{q}.
- If $f(\alpha)=0$, then $f\left(\alpha^{q}\right)=0$.
- Powers of an element and its degree are related through its minimal polynomial.
- AKS Deterministic Primality Testing Algorithm

7,Qi Cheng's Result

Theorem (Q. Cheng, 2004)

Let q be a fixed prime power and let N be a positive integer. Then in time polynomial in N an integer $n \in[N, 2 q N]$ and $\alpha \in \mathbb{F}_{q^{n}}$ being of order at least $5.8^{n / \log _{q} n}$ can be found.

Theorem (Q. Cheng, 2004)

Let q be a fixed prime power and let N be a positive integer. Then in time polynomial in N an integer $n \in\left[N, N+O\left(N^{0.77}\right)\right]$ and $\alpha \in \mathbb{F}_{q^{n}}$ being of order at least $5.8^{\sqrt{n}}$ can be found.

8, Main Idea and Proof

- Lemma: Let q be a prime power and let $n \mid q$ - 1 .If $x^{n}-u \in \mathbb{F}_{q}[x]$ is an irreducible polynomial over \mathbb{F}_{q} and $\alpha \in \mathbb{F}_{q^{n}}$ is one of its roots, Then for any $a \in \mathbb{F}_{q}^{*}, \alpha+a$ has order greater than 5.8^{n}.
- Conjugates of α are $c_{1} \alpha, c_{2} \alpha, \ldots, c_{n} \alpha$ where c_{i} 's are n-th roots of unity in \mathbb{F}_{q}.
- Conjugates of $\alpha+\boldsymbol{a}$ are $c_{i} \alpha+$ a's.

9, Proof

- Let e_{i} 's be positive integers such that $\sum e_{i} \leqslant n-1$.
- Take the elements $(\alpha+a)^{\sum e e_{i} q^{i}} \in \mathbb{F}_{q^{n}}$.
- $(\alpha+a)^{\sum e_{i} q^{i}}=\Pi(\alpha+a)^{e_{i} q^{i}}=\Pi\left(c_{i} \alpha+a\right)^{e_{i}}$.
- If $\Pi\left(c_{i} \alpha+a\right)^{e_{i}}=\Pi\left(c_{i} \alpha+a\right)^{f_{i}}$, then the degree of $\alpha \leqslant n$.(a contradiction)
- α becomes a root of $\Pi\left(c_{i} x+a\right)^{e_{i}}-\prod\left(c_{i} x+a\right)^{f_{i}}$.

10, Gauss Periods

Definition

Let $r=2 n+1$ be a prime number coprime with q and $\beta \in \mathbb{F}_{q^{2 n}}$ be a primitive r-th root of unity. Then the element

$$
\begin{equation*}
\alpha=\beta+\beta^{-1} \in \mathbb{F}_{q^{n}} \tag{1}
\end{equation*}
$$

is called a Gauss period of type ($n, 2$).

Theorem

If q is a primitive root modulo r, and α is a Gauss period, then $N B=\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$ is a normal basis for $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}. In this case, the minimal polynomial of β is of degree $2 n$.

11, Orders of Gauss periods

Theorem (I. Shparlinski and J. von zur Gathen, 1998)

Let p be the characteristic of \mathbb{F}_{q} and let q be a primitive root modulo a prime $r=2 n+1$ and β be a primitive r-th root of unity in $\mathbb{F}_{q^{2 n}}$. Then the multiplicative order of $\alpha=\beta+\beta^{-1}$ is at least

$$
2^{\sqrt{2 n}}
$$

Theorem (ASV)

With the assumptions as above the multiplicative order of α is at least

$$
P(n-1, p-1) .
$$

$P(m, k)$ is the number of integer partitions of m where no part appears more than k times.

12, Orders of Gauss Periods

Corollary (ASV)

Assuming everything as the last theorem the multiplicative order of α is at least

$$
\exp \left(\left(\pi \sqrt{\frac{2(p-1)}{3 p}}+o(1)\right) \sqrt{n}\right)
$$

as $n \rightarrow \infty$.

- When $p>n$, the order of α is at least $13^{\sqrt{n}}$.
- When $p=2$, the order of α is at least $6.13^{\sqrt{n}}$.

13, Proof

- $\mathfrak{P}=\left\{\left(u_{1}, \ldots, u_{n-1}\right) \mid \sum_{j=1}^{n-1} u_{j} j=n-1,0 \leqslant u_{i}^{\prime} s \leqslant p-1\right\}$.
- Let $q^{z_{j}} \equiv j(\bmod r), 0 \leqslant z_{j}<r$. (q is a primitive root modulo r)
- If $\left(u_{1}, \ldots, u_{n-1}\right),\left(v_{1}, \ldots, v_{n-1}\right) \in \mathfrak{P}$ and
$\left(u_{1}, \ldots, u_{n-1}\right) \neq\left(v_{1}, \ldots, v_{n-1}\right)$, then $\alpha^{\sum u_{i} q_{i}^{z_{i}}} \neq \alpha^{\sum v_{i} q^{z_{i}}}$.
- $\alpha^{\sum u_{i} q^{z_{i}}}=\Pi\left(\beta^{q^{z_{i}}}+\beta^{-q^{z_{i}}}\right)^{u_{i}}=\Pi\left(\beta^{i}+\beta^{-i}\right)^{u_{i}}=$ $\beta^{n-1} \Pi\left(\beta^{2 i}+1\right)^{u_{i}}$.

14, Applying Polynomial ABC Theorem

- $\alpha^{\sum v_{i} q_{i}}=\beta^{n-1} \Pi\left(\beta^{2 i}+1\right)^{v_{i}}$.
- If $\alpha^{\sum u_{i} q^{z_{i}}}=\alpha^{\sum v_{i} q^{z_{i}}}$, then $\Pi\left(\beta^{2 i}+1\right)^{u_{i}}=\Pi\left(\beta^{2 i}+1\right)^{v_{i}}$.
- β is of degree $2 n$.(A contradiction)

Theorem (Polynomial ABC theorem)

Let A, B, C be nonzero polynomials over \mathbb{F}_{q} with $A+B+C=0$ and $\operatorname{gcd}(A, B, C)=1$. If $\operatorname{deg} A \geqslant \operatorname{deg} \operatorname{rad} A B C$, then $A^{\prime}=0$.

- Using ABC we can beat GS bound but still unable to beat the partition bound.

Outlook

- Outlook
- Get similar bound for other types of Gauss periods.
- Apply polynomial ABC theorem.

