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Abstract. This paper is concerned with the following Gierer-Meinhardt type systems
subject to Dirichlet boundary conditions





∆u− αu +
up

vq
+ ρ(x) = 0, u > 0 in Ω,

∆v − βv +
ur

vs
= 0, v > 0 in Ω,

u = 0, v = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 1) is a smooth bounded domain, ρ(x) ≥ 0 in Ω and α, β ≥ 0. We
are mainly interested in the case of different source terms, that is, (p, q) 6= (r, s). Under
appropriate conditions on the exponents p, q, r and s we establish various results of
existence, regularity and boundary behavior. In the one dimensional case a uniqueness
result is also presented.
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In 1972 Gierer and Meinhardt [8] proposed a mathematical model for pattern

formation of spatial tissue structures in morphogenesis, a biological phenomenon

discovered by Trembley [24] in 1744. The mechanism behind the Gierer-Meinhardt’s

model is based on the existence of two chemical substances: a slowly diffusing activator

and a rapidly diffusing inhibitor. The ratio of their diffusion rates is assumed to be

small.

The model introduced by Gierer and Meinhardt reads as



ut = d1∆u− αu + cρ
up

vq
+ ρ0ρ in Ω× (0, T ),

vt = d2∆v − βv + c′ρ′
ur

vs
in Ω× (0, T ),

(0.1)

subject to Neumann boundary conditions in a smooth bounded domain Ω. Here the

unknowns u and v stand for the concentration of activator and inhibitor with the source

distributions ρ and ρ′ respectively. In system (0.1), d1, d2 are the diffusion coefficients

and α, β, c, c′, ρ0 are positive constants. The exponents p, q, r, s > 0 verify the relation

qr > (p− 1)(s + 1) > 0.

The model introduced by Gierer and Meinhardt has been used with satisfactory

quantitative results for modelling the head regeneration process of hydra, an animal

of few millimeters in length, consisting of 100,000 cells of about 15 different types and

having a polar structure.

The Gierer-Meinhardt system originates in the Turing’s one [23] introduced in 1952

as a mathematical model for the development of complex organisms from a single cell.

It has been emphasized that localized peaks in concentration of chemical substances,

known as inducers or morphogens, could be responsible for a group of cells developing

differently from the surrounding cells. Turing discovered through linear analysis that a

large difference in relative size of diffusivities for activating and inhibiting substances

carries instability of the homogeneous, constant steady state, thus leading to the

presence of nontrivial, possibly stable stationary configurations.

A global existence result for a more general system than (0.1) is given in the recent

paper of Jiang [10]. It has also been shown that the dynamics of the system (0.1)

exhibit various interesting behaviors such as periodic solutions, unbounded oscillating

global solutions, and finite time blow-up solutions. We refer the reader to Ni, Suzuki

and Takagi [18] for the entire description of dynamics concerning the system (0.1).

Many works have been devoted to the study of the steady-state solutions of (0.1),

that is, solutions of the stationary system



d1∆u− αu + cρ
up

vq
+ ρ0ρ = 0 in Ω,

d2∆v − βv + c′ρ′
ur

vs
= 0 in Ω,

(0.2)

subject to Neumann boundary conditions. The main difficulty in the treatment of (0.2)

is the lack of variational structure. Another direction of research is to consider the

shadow system associated to (0.2), an idea due to Keener [11]. This system is obtained

dividing by d2 in the second equation and then letting d2 → ∞. It has been shown
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that nonconstant solutions of the shadow system associated to (0.2) exhibit interior or

boundary concentrating points. Among the large number of works in this direction we

refer the interested reader to [19], [20], [21], [25], [26] as well as to the survey papers of

Ni [16], [17].

In this paper new features of Gierer-Meinhardt type systems are emphasized. More

exactly, we shall be concerned with systems of the following type



∆u− αu +
up

vq
+ ρ(x) = 0, u > 0 in Ω,

∆v − βv +
ur

vs
= 0, v > 0 in Ω,

u = 0, v = 0 on ∂Ω,

(0.3)

in a smooth bounded domain Ω ⊂ RN (N ≥ 1). Here u and v represent the concentration

of the activator and inhibitor and ρ ∈ C0,γ(Ω) (0 < γ < 1) represents the source

distribution of the activator. We assume that ρ ≥ 0 in Ω, ρ 6≡ 0 and α, β are nonnegative

real numbers. The case ρ ≡ 0 is more delicate and involves a more careful analysis of

the Gierer-Meinhardt system. This situation has been analyzed in the recent works [1],

[2], [18], [21], [25], [26].

We are mainly interested in this paper in the case where the activator and inhibitor

have different source terms, that is, (p, q) 6= (r, s).

Let us notice that the homogeneous Dirichlet boundary condition in (0.3) (instead of

Neumann’s one as in (0.2)) turns the system singular in the sense that the nonlinearities
up

vq and ur

vs become unbounded around the boundary.

The existent results in the literature for (0.3) concern the case of common sources

of the concentrations, that is, (p, q) = (r, s). If p = q = r = s = 1 and ρ ≡ 0, the system

(0.3) was studied in Choi and McKenna [1]. In Kim [12], [13] it is studied the system

(0.3) with p = r and q = s. In the case of common sources, a decouplization of system is

suitable in order to provide a priori estimates for the unknowns u and v. More precisely,

if p = r and q = s then, subtracting the two equations in (0.3) and letting w = u − v

we get the following equivalent form



∆w − αw + (β − α)wv + ρ(x) = 0, in Ω,

∆v − βv +
(v + w)p

vq
= 0 in Ω,

v = w = 0 on ∂Ω.

(0.4)

Thus, the study of system (0.3) amounts to the study of (0.4) in which the first equation

is linear. This is more suitable to derive upper and lower barriers for u and v (see [1], [12],

[13]). For more applications of decouplization method in the context of elliptic systems

we refer the reader to [14]. We also mention here the paper of Choi and McKenna [2]

where the existence of radially symmetric solutions in the case p = r > 1, q = 1, s = 0

and Ω = B1 ⊂ R2 is discussed. In [2], a priori bounds for concentrations u and v are

obtained through sharp estimates for the associated Green’s function.

In our case, such a decouplization is not possible due to the fact that (p, q) 6= (r, s).

In order to overcome this lack, we shall exploit the boundary behavior of solutions of
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single singular equations associated to system (0.3). In turn, this approach requires

uniqueness or suitable comparison principles for single singular equations that come

from our system. These features are usually associated with nonlinearities having a

sublinear growth and that is why we restrict our attention to the case p < 1. Our

results extend those presented in [5], [6] and give precise answers to some questions

raised in Choi and McKenna [1], [2] and Kim [12], [13]. Also the approach we give in

this paper enables us to deal with various type of exponents. For instance, we shall

consider the case p < 0 (see Theorems 1.4 and 1.5) which means that the nonlinearity

in the first equation of (0.3) is singular in both its variables u and v. Furthermore, these

results can be successfully applied to treat the case −1 < s ≤ 0 (see Remark ??).

1. Main results

We are interested in the following range of exponents

−∞ < p < 1,

q, r, s > 0 and s ≥ r − 1. (1.1)

In our approach we do not require any order relation between the nonnegative

numbers α and β. Also we do not impose any growth condition on the source distribution

ρ(x) of the activator. A major role in our analysis will be played by the number

σ = min

{
1,

2 + r

1 + s

}
. (1.2)

First we are concerned with the case 0 ≤ p < 1. The existence result in this case is the

following.

Theorem 1.1. Assume that 0 ≤ p < 1, qσ < p + 1 and q, r, s satisfy (1.1). Then the

system (0.3) has at least one classical solution and there exist c1, c2 > 0 such that any

solution (u, v) of (0.3) satisfies the following estimates in Ω:

c1d(x) ≤ u ≤ c2d(x) in Ω,

and

c1d(x) ≤ v ≤ c2d(x) if s < r + 1,

c1d(x) (1 + | ln d(x)|)1/(1+s) ≤ v ≤ c2d(x) (1 + | ln d(x)|)1/(1+s) if s = r + 1,

c1d(x)(2+r)/(1+s) ≤ v ≤ c2d(x)(2+r)/(1+s) if s > r + 1,

where d(x) = dist(x, ∂Ω).

Further regularity of the solution to (0.3) can be obtained using the same arguments

as in Gui and Lin [9]. More precisely, it is proved in [9] that if u ∈ C2(Ω)∩C(Ω) satisfies

−∆u = u−ν in a smooth bounded domain Ω and u = 0 on ∂Ω, then u ∈ C1,1−ν(Ω).

Using the conclusion in Theorem 1.1 we have
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Corollary 1.2. Assume that 0 ≤ p < 1 and q, r, s satisfy (1.1).

(i) If q ≤ p and s ≤ r, then the system (0.3) has at least one classical solution.

Moreover, any solution of (0.3) belongs to C2(Ω)× C2(Ω);

(ii) If −1 < p−q < 0 and −1 < r−s < 0, then the system (0.3) has at least one classical

solution. Moreover, any solution (u, v) of (0.3) satisfies u ∈ C2(Ω) ∩ C1,1+p−q(Ω)

and v ∈ C2(Ω) ∩ C1,1+r−s(Ω).

The issue of uniqueness is a delicate matter even in one dimension. In this case the

system (0.3) reads



u′′ − αu +
up

vq
+ ρ(x) = 0 in (0, 1),

v′′ − βv +
ur

vs
= 0 in (0, 1),

u(0) = u(1) = 0, v(0) = v(1) = 0.

(1.3)

In [1] it is proved that the system (1.3) has a unique solution provided that

p = q = r = s = 1. The main idea is to write (1.3) as a linear system with

smooth coefficients and then to use the C2[0, 1] × C2[0, 1] regularity of the solution.

This approach has been used in [5] (see also [4] or [6, Theorem 2.7]) in the case β ≤ α,

0 < q ≤ p ≤ 1 and r − p = s− q ≥ 0.

In this paper we are able to show that the uniqueness of the solution to (1.3) still

holds provided that

−1 < p− q < 1, −1 < r − s < 1. (1.4)

Note that for the above range of exponents, the solutions of (1.3) do not necessarily

belong to C2[0, 1]×C2[0, 1]. We prove that a C1+δ-regularity up to the boundary of the

solution suffices in order to have uniqueness. Therefore, we prove

Theorem 1.3. Let Ω = (0, 1), 0 ≤ p < 1 and q, r, s > 0 verify (1.4). Then the system

(1.3) has a unique classical solution.

Unlike the Neumann boundary condition, in which a large multiplicities of solutions

are observed, the uniqueness in the above result seems to be a particular feature of the

Dirichlet boundary condition together with the sublinear character of the first equation

in the system (1.3).

Next, we are concerned with the case −∞ < p < 0. First, we prove the following

nonexistence result.

Theorem 1.4. Suppose −∞ < p < 0, q, r, s > 0 and one of the following hold

(i) q ≥ 2 and s < 1;

(ii) q > 2 and s = 1;

(iii) q > s + 1 and s > 1.

Then the system (0.3) has no classical solutions.

The corresponding existence result in this case is the following.
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Theorem 1.5. Assume that −∞ < p < 0, q, r, s satisfy (1.1) and qσ < 2. Then, the

system (0.3) has classical solutions. Moreover, if q < p + 1 and s < r + 1 any classical

solution (u, v) of (0.3) satisfies u, v ∈ C2(Ω) ∩ C1(Ω).

In proving Theorems 1.1 and 1.5 we rely on Schauder’s fixed point theorem. The

main point is to provide a priori bounds which allows us to control the map whose fixed

points are the solutions of (0.3). To this aim, boundary estimates for solutions to single

singular elliptic equations associated to (0.3) will be used.

The outline of the paper is as follows. In Section 3 we collect some auxiliary

results concerning boundary estimates and comparison principles for elliptic equations

involving singular nonlinearities. The proofs of the above results will be separately

given in Sections 4 and 5 for the case 0 ≤ p < 1 and −∞ < p < 0 respectively. In the

Appendix we provide an extension of Lemma 8 in [1] which is a useful tool in proving

the uniqueness of the solution in one dimension.

2. Auxiliary results

Throughout this paper ‖·‖∞ denotes the L∞(Ω) norm. Also we denote by λ1 and ϕ1 the

first eigenvalue and the first normalized eigenfunction of −∆ in H1
0 (Ω) with ‖ϕ1‖∞ = 1.

As it is well known, ϕ1 ∈ C2(Ω), ϕ1 > 0 in Ω, and there exists C > 0 such that

C d(x) ≤ ϕ1 ≤ 1

C
d(x) in Ω, (2.1)

We also recall the following useful result which is due to Lazer and McKenna.

Lemma 2.1. (Lazer and McKenna [15])
∫
Ω

ϕτ
1dx < ∞ if and only if τ > −1.

Basic to our approach is the following comparison result which is suitable for

singular nonlinearities. We refer the reader to [7, Lemma 2.1] for a complete proof.

Lemma 2.2. Let Ψ : Ω × (0,∞) → R be a Hölder continuous function such that the

mapping (0,∞) 3 t 7−→ Ψ(x,t)
t

is strictly decreasing for each x ∈ Ω. Assume that there

exist v1, v2 ∈ C2(Ω) ∩ C(Ω) such that

(a) ∆v1 + Ψ(x, v1) ≤ 0 ≤ ∆v2 + Ψ(x, v2) in Ω;

(b) v1, v2 > 0 in Ω and v1 ≥ v2 on ∂Ω;

(c) ∆v1 ∈ L1(Ω) or ∆v2 ∈ L1(Ω).

Then v1 ≥ v2 in Ω.

Another useful tool is the following result which is a direct consequence of the

maximum principle.

Lemma 2.3. Let k ∈ C(0,∞) be a positive decreasing function and a1, a2 ∈ C(Ω) with

0 < a2 ≤ a1 in Ω. Assume that there exist β ≥ 0, v1, v2 ∈ C2(Ω) ∩ C(Ω) such that

v1, v2 > 0 in Ω, v1 ≥ v2 on ∂Ω and

∆v1 − βv1 + a1(x)k(v1) ≤ 0 ≤ ∆v2 − βv2 + a2(x)k(v2) in Ω.

Then v1 ≥ v2 in Ω.



Steady-state solutions for Gierer-Meinhardt systems 7

Proposition 2.4. Let 0 ≤ p < 1, 0 < q < p + 1 and a ∈ C0,γ(Ω) (0 < γ < 1) be such

that

a1ϕ
−q
1 (x) ≤ a(x) ≤ a2ϕ

−q
1 (x) in Ω, (2.2)

for some a1, a2 > 0. Then, the problem



∆u− αu + a(x)up + ρ(x) = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(2.3)

has a unique solution u ∈ C2(Ω) ∩ C(Ω). Moreover, there exist m1,m2 > 0 such that

m1ϕ1 ≤ u ≤ m2ϕ1 in Ω. (2.4)

Proof.

Let w be the unique solution of



∆w − αw + ρ(x) = 0 in Ω,

w > 0 in Ω,

w = 0 on ∂Ω.

(2.5)

By standard elliptic arguments and maximum principle we have w ∈ C2(Ω). Obviously

u := w is a sub-solution of (2.3). Furthermore, by virtue of (2.1) we can find c1, c2 > 0

such that

c1ϕ1 ≤ w ≤ c2ϕ1 in Ω. (2.6)

Since q < p + 1, by a result in Wei [27], there exists h ∈ C2(0, 1) ∩ C1[0, 1] such

that 



−h′′(t) = t−qhp(t), for all 0 < t < 1,

h > 0 in (0, 1),

h(0) = h(1) = 0.

Using the fact that h′(0) > 0 we have

c3t ≤ h(t) ≤ c4t, (2.7)

for t > 0 small enough and for some c3, c4 > 0. Furthermore, we may find c > 0 such

that h′(cϕ1) > 0 in Ω.

We are looking for a super-solution of (2.3) in the form u := Mh(cϕ1) + w,

for M > 1 large enough. For this purpose we have to check that the inequality

−∆u + αu ≥ a(x)up + ρ(x) holds in Ω provided that M > 1 is sufficiently large.

We have

−∆u + αu ≥ −∆(Mh(cϕ1)) + ρ(x)

= Mc2−qϕ−q
1 hp(cϕ1)|∇ϕ1|2 + Mλ1cϕ1h

′(cϕ1) + ρ(x) in Ω.

By (2.7) we may write

−∆u + αu ≥ Mc2+p−qcp
3ϕ

p−q
1 |∇ϕ1|2 + Mλ1cϕ1h

′(cϕ1) + ρ(x) in Ω.(2.8)
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On the other hand, by (2.2), (2.6) and (2.7) we have

a(x)up ≤ a2ϕ
−q
1 (Mh(cϕ1) + w)p ≤ a2ϕ

p−q
1 (Mcc4 + c2)

p in Ω. (2.9)

Using the Hopf’s maximum principle, there exist ω ⊂⊂ Ω and δ > 0 such that

|∇ϕ1| > δ in Ω \ ω and ϕ1 > δ in ω. (2.10)

Since 0 ≤ p < 1, we may choose M > 1 such that

Mc2+p−qcp
3δ

2 > a2(Mcc4 + c2)
p, (2.11)

Mλ1c min
ω

ϕ1h
′(cϕ1) ≥ a2(Mcc4 + c2)

p max
ω

ϕp−q
1 . (2.12)

Combining (2.8), (2.9) and (2.11) we obtain

−∆u+αu ≥ Mc2+p−qcp
3ϕ

p−q
1 |∇ϕ1|2+ρ(x) ≥ a(x)up+ρ(x) in Ω\ω.(2.13)

Furthermore, by (2.8), (2.9) and (2.12) we deduce

−∆u + αu ≥ Mλ1cϕ1h
′(cϕ1) + ρ(x) ≥ a(x)up + ρ(x) in ω. (2.14)

Now the claim follows by (2.13) and (2.14). Thus, the problem (2.3) has a solution

u ∈ C2(Ω)∩C(Ω) such that u ≤ u ≤ u in Ω. By (2.6) and (2.7) we obtain the estimate

(2.4). This also implies that

C1ϕ
p−q
1 ≤ a(x)up ≤ C2ϕ

p−q
1 in Ω,

for some C1, C2 > 0. Since p − q > −1, by Lemma 2.1 we get a(x)up ∈ L1(Ω) which

finally yields ∆u ∈ L1(Ω). Now the uniqueness follows by Lemma 2.2. This concludes

the proof of Proposition 2.4.

We next consider the problem



∆v − βv + a(x)v−s + b(x) = 0 in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,

(2.15)

where a ∈ C0,γ(Ω) (0 < γ < 1) satisfies

a1ϕ
r
1(x) ≤ a(x) ≤ a2ϕ

r
1(x) in Ω, (2.16)

for some a1, a2 > 0 and r ∈ R. We also assume that b ∈ C0,γ(Ω), β ≥ 0 and s > 0.

For the convenience, let us introduce Γs,r : (0,∞) → (0,∞) defined by

Γs,r(t) =





t , if s < r + 1,

t(1 + | log t|)1/(1+s) , if s = r + 1,

t(2+r)/(1+s) , if s > r + 1,

(2.17)

for all r > −2 and s > 0. It is easy to see that

Γs,r(t) ≥ tσ for all t > 0, (2.18)

where σ is defined in (1.2). Moreover, for all m > 0 there exists m1,m2 > 0 such that

m1Γs,r(t) ≤ Γs,r(mt) ≤ m2Γs,r(t) for all t > 0. (2.19)
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Proposition 2.5. (i) If r ≤ −2 then the problem (2.15) has no classical solutions;

(ii) If r > −2 then the problem (2.15) has a unique solution u ∈ C2(Ω) ∩ C(Ω).

Moreover, there exist c1, c2 > 0 such that

c1Γr,s(ϕ1) ≤ v ≤ c2Γr,s(ϕ1) in Ω. (2.20)

A general nonexistence result for singular elliptic equations with unbounded

potentials can be found in [3]. Also a nonexistence result in the case b ≡ 0, β = 0 and

r ≤ −2 is presented in [28, Theorem 1.2]. Concerning the existence part in Proposition

2.5, a similar result can be found in [9] in the case b ≡ 0, β = 0 and r ≥ 0. We shall give

here a different proof which relies on a direct construction of a sub and super-solution.

This will provide the estimate (2.20).

Proof. (i) Assume that there exist r ≥ −2 and v ∈ C2(Ω) ∩ C(Ω) a classical solution

of (2.15). For 0 < ε < 1 consider the problem



∆z − βz + a1(ϕ1 + ε)r(z + ε)−s = 0 in Ω,

z > 0 in Ω,

z = 0 on ∂Ω.

(2.21)

Obviously, z = 0 is a sub-solution and z = v is a super-solution of (2.21). Hence, for

all 0 < ε < 1 there exists zε ∈ C2(Ω) a solution of (2.21) such that 0 < zε ≤ v in Ω.

Multiplying by ϕ1 in (2.21) and then integrating over Ω we get

(β + λ1)

∫

Ω

zεϕ1dx = a1

∫

Ω

ϕ1(ϕ1 + ε)r(zε + ε)−sdx.

Since zε ≤ v in Ω, the above equality yields

(β + λ1)

∫

Ω

vϕ1dx ≥ a1(1 + ‖v‖∞)−s

∫

Ω

ϕ1(ϕ1 + ε)rdx.

This implies ∫

ω

ϕ1(ϕ1 + ε)rdx < M for all ω ⊂⊂ Ω,

where M > 0 does not depend on ε. Passing to the limit with ε → 0 in the above

inequality we find
∫

ω
ϕ1+r

1 dx < M , for all ω ⊂⊂ Ω, that is,
∫

Ω
ϕ1+r

1 dx < ∞. Since

r ≥ −2, the last inequality contradicts Lemma 2.1. Therefore, the problem (2.15) has

no classical solutions if r ≥ −2.

(ii) Let r > −2 and s ≥ r − 1. According to [22, Theorem 1], there exists

H ∈ C2(0, 1) ∩ C[0, 1] such that



−H ′′(t) = trH−s(t), for all 0 < t < 1,

H > 0 in (0, 1),

H(0) = H(1) = 0.

(2.22)

Since H is concave, there exists H ′(0+) > 0. Hence, taking 0 < η < 1 sufficiently small,

we can assume that H ′ > 0 in (0, η). From [22, p. 904] (see also Theorem 3.5 in [3]),

there exist c1, c2 > 0 such that

c1Γs,r(t) ≤ H(t) ≤ c2Γs,r(t) in (0, η). (2.23)
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As a consequence of (2.23) and the fact that s ≥ r − 1 we derive

H(t)s+1 ≤ c3t
r in (0, η), (2.24)

for some positive constant c3 > 0. Let c > 0 be such that cϕ1 < η in Ω. We claim that

we can find 0 < m < 1 small enough such that v := mH(cϕ1) satisfies

2βv1+s ≤ a(x) in Ω and −∆v ≤ 1

2
a(x)v−s in Ω. (2.25)

Then, from (2.25) we deduce

∆v − βv + a(x)v−s ≥ 0 in Ω, (2.26)

that is, v is a sub-solution of (2.15).

By virtue of (2.16) and (2.24) we have

2βv1+s = 2βm1+sH1+s(cϕ1) ≤ 2βm1+sc3(cϕ1)
r ≤ 2βm1+scrc3

a1

a(x) in Ω.

Let us chose now m > 0 such that 2βm1+scrc3 < a1. This concludes the first inequality

in (2.25).

In order to establish the second inequality in (2.25), a straightforward computation

yields

−∆v = −mc2|∇ϕ1|2H ′′(cϕ1) + mλ1cϕ1H
′(cϕ1)

= mc2+rϕr
1|∇ϕ1|2H−s(cϕ1) + mλ1cϕ1H

′(cϕ1)

= m1+sc2+rϕr
1|∇ϕ1|2v−s + mλ1cϕ1H

′(cϕ1) in Ω.

Since H ′ is decreasing on (0, η), it follows that tH ′(t) ≤ H(t) for all t ∈ (0, η).

Furthermore, from (2.24) we deduce

cϕ1H
′(cϕ1) ≤ H(cϕ1) ≤ c3(cϕ1)

rH−s(cϕ1) in Ω. (2.27)

Combining (2.27) and (2.27), for 0 < m < 1 we obtain

−∆v ≤ m1+sc2+rϕr
1|∇ϕ1|2v−s + mλ1c

rc3ϕ
r
1H

−s(cϕ1)

≤ mc2+rϕr
1|∇ϕ1|2v−s + mλ1c

rc3ϕ
r
1v
−s

= mcrϕr
1v
−s(c2|∇ϕ1|2 + c3λ1)

≤ mcr

a1

(c2‖∇ϕ1‖2
∞ + c3λ1)a(x)v−s in Ω.

Now, it suffices to choose 0 < m < 1 such that mcr

a1
(c2‖∇ϕ1‖2

∞ + c3λ1) < 1
2
. This

establishes the second inequality in (2.25) and the fact that v is a sub-solution of (2.15).

Next we provide a super-solution v of (2.15) such that v ≤ v in Ω. To this aim we

first claim that there exists M > 1 large enough such that z := MH(cϕ1) satisfies

∆z + a(x)z−s ≤ 0 in Ω. (2.28)

As before we have

∆z = −M1+sc2+rϕr
1|∇ϕ1|2z−s −Mλ1cϕ1H

′(cϕ1) in Ω. (2.29)



Steady-state solutions for Gierer-Meinhardt systems 11

Let ω ⊂⊂ Ω and δ > 0 be such that (2.10) holds and let us consider M > 1 such

that

M1+sc2+rδ2 > a2, (2.30)

M1+scλ1 min
ω

ϕ1H
′(cϕ1) ≥ a2 max

ω
ϕr

1H
−s(cϕ1). (2.31)

Then, as in the proof of Proposition 2.4, by (2.10) and (2.30)-(2.31) we get

∆z + a(x)z−s ≤ −M1+sc2+rϕr
1|∇ϕ1|2z−s + a(x)z−s

≤ −M1+sc2+rδ2ϕr
1z
−s + a2ϕ

r
1z
−s

= −
(
M1+sc2+rδ2 − a2

)
ϕr

1z
−s ≤ 0 in Ω \ ω,

and

∆z + a(x)z−s ≤ −Mλ1cϕ1H
′(cϕ1) + a(x)z−s

≤ −Mλ1cϕ1H
′(cϕ1) + a2ϕ

r
1z
−s

= − 1

M s

(
M1+scλ1ϕ1H

′(cϕ1)− a2ϕ
r
1H

−s(cϕ1)
)

≤ 0 in ω.

Hence, we have obtained the inequality in (2.28).

Let w̃ ∈ C2(Ω) be the unique solution of





∆w̃ − βw̃ + b(x) = 0 in Ω,

w̃ > 0 in Ω,

w̃ = 0 on ∂Ω.

Then v := z + w̃ satisfies v > 0 in Ω, v = 0 on ∂Ω and by (2.28) we have

∆v − βv + a(x)v−s + b(x) ≤ ∆z − βz + a(x)z−s ≤ 0 in Ω.

Hence, v is a super-solution of (2.15) and clearly we have v ≤ v in Ω. It follows that

problem (2.15) has a classical solution v ∈ C2(Ω) ∩ C(Ω) such that v ≤ v ≤ v in Ω.

On the other hand, since w̃ ∈ C2(Ω), we deduce that there exists c̃1 > 0 such that

w̃ ≤ c̃1ϕ1 in Ω. This implies w̃ ≤ c̃2Γs,r(ϕ1) in Ω, for some c̃2 > 0. Finally, using the last

inequality, the definition of v, v and (2.23), we get the estimate (2.20). The uniqueness

of the solution follows by Lemma 2.3. This finishes the proof of Proposition 2.5.

3. Case 0 ≤ p < 1

3.1. Proof of Theorem 1.1

Let 0 < ε0 < 1 and set

Ωε := {x ∈ Ω : d(x) > ε}, for all 0 < ε < ε0. (3.1)
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For ε0 small enough, Ωε remains a smooth domain. The existence of a solution to (0.3)

will be proved by considering the approximated system



∆u− αu +
up

vq
+ ρ(x) = 0, u > 0 in Ωε,

∆v − βv +
ur

vs
= 0, v > 0 in Ωε,

u = ε, v = Γs,r(ε) on ∂Ωε.

(3.2)

The existence of a classical solution to (3.2) is obtained by using the Schauder’s

fixed point theorem. For 0 < ε < ε0 and m1,m2 < 1 < M1,M2 consider the set Aε of

all (u, v) ∈ C(Ωε)× C(Ωε) such that

m1ϕ1 ≤ u ≤ M1ϕ1 in Ωε,

m2Γs,r(ϕ1) ≤ v ≤ M2Γs,r(ϕ1) in Ωε,

u = ε, v = Γs,r(ε) on ∂Ωε

Next, we define the mapping T : Aε → C(Ωε)× C(Ωε) as follows. For (u, v) ∈ Aε

we set

T (u, v) = (Tu, Tv), (3.3)

where Tu and Tv satisfy




∆(Tu)− α(Tu) +
(Tu)p

vq
+ ρ(x) = 0, Tu > 0 in Ωε,

∆(Tv)− β(Tv) +
ur

(Tv)s
= 0, T v > 0 in Ωε,

Tu = ε, Tv = Γs,r(ε) on ∂Ωε.

(3.4)

Using the definition of Aε, by sub and super-solution method combined with Lemma 2.2

and Lemma 2.3, the above system has a unique solution (Tu, Tv) with Tu, Tv ∈ C2(Ωε).

Basic to our approach are the following two results which allows us to apply Schauder’s

fixed point theorem.

Lemma 3.1. There exist m1 < 1 < M1 and m2 < 1 < M2 which are independent of ε

such that T (Aε) ⊆ Aε, for all 0 < ε < ε0.

Proof. Let w ∈ C2(Ω) be the unique solution of problem (2.5). In view of (2.1) and

(2.6) we have

w(x) ≤ c2ϕ1 ≤ c2

C
d(x) =

c2

C
ε on ∂Ωε.

Hence, if δ1 = min{1, C
c2
} then δ1w ≤ ε on ∂Ωε. Furthermore,

∆(Tu)− α(Tu) + ρ(x) ≤ 0 ≤ ∆(δ1w)− α(δ1w) + ρ(x) in Ωε,

Tu = ε ≥ δ1w on ∂Ωε.



Steady-state solutions for Gierer-Meinhardt systems 13

By maximum principle, we obtain Tu ≥ δ1w in Ωε. In view of (2.6), let us choose

m1 = δ1c1 in the definition of Aε (where c1 is the constant in (2.6)). Then, (2.6)

combined with the last estimates yields

Tu ≥ m1ϕ1 in Ωε. (3.5)

From the second equation in (3.4) and the fact that u ≥ m1ϕ1 in Ωε we have

∆(Tv)− β(Tv) +
mr

1ϕ
r
1

(Tv)s
≤ 0 in Ωε. (3.6)

Let us consider the problem



∆ξ − βξ + ϕr
1ξ
−s = 0 in Ω,

ξ > 0 in Ω,

ξ = 0 on ∂Ω.

(3.7)

Using Proposition 2.5 (ii), there exists ξ ∈ C2(Ω)∩C(Ω) a unique solution of (3.7) with

the additional property

c3Γs,r(ϕ1) ≤ ξ ≤ c4Γs,r(ϕ1) in Ω, (3.8)

for some c3, c4 > 0. Moreover, by (3.8), (2.1) and the property (2.19) of Γs,r we can find

c5, c6 > 0 such that

c5Γs,r(d(x)) ≤ ξ ≤ c6Γs,r(d(x)) in Ω. (3.9)

Let δ2 = min{1,mr/(1+s)
1 , 1

c6
}. Then

∆(δ2ξ)− β(δ2ξ) + mr
1ϕ

r
1(δ2ξ)

−s ≥ δ2

(
∆ξ − βξ + ϕr

1ξ
−s

)
= 0 in Ω,(3.10)

and by (3.9) we have

δ2ξ ≤ δ2c6Γs,r(d(x)) ≤ Γs,r(ε) on ∂Ωε. (3.11)

Therefore, from (3.6), (3.10) and (3.11) we have obtained

∆(Tv)− β(Tv) + mr
1ϕ

r
1(Tv)−s ≤ 0 ≤ ∆(δ2ξ)− β(δ2ξ) + mr

1ϕ
r
1(δ2ξ)

−s in Ω,

T v = Γs,r(ε) ≥ δ2ξ on ∂Ωε.

By Lemma 2.3 it follows that Tv ≥ δ2ξ in Ωε. In view of (3.8), the last inequality leads

us to Tv ≥ δ2c3Γs,r(ϕ1) in Ωε. Thus, we consider

m2 = min{1, δ2c3} > 0

in the definition of the set Aε. Note that m2 is independent of ε and Tv ≥ m2Γs,r(ϕ1)

in Ωε.

The definition of Aε and (2.18) yield

v ≥ m2Γs,r(ϕ1) ≥ m2ϕ
σ
1 in Ωε.

Using the estimate v ≥ m2ϕ
σ
1 in the first equation of (3.4) we get

∆(Tu)− α(Tu) + m−q
2 ϕ−qσ

1 (Tu)p + ρ(x) ≥ 0 in Ωε. (3.12)
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As above, we next consider the problem



∆ζ − αζ + m−q
2 ϕ−qσ

1 ζp + ρ(x) = 0 in Ω,

ζ > 0 in Ω,

ζ = 0 on ∂Ω.

(3.13)

Since qσ < p + 1, by Proposition 2.4 there exists ζ ∈ C2(Ω)∩C(Ω) a unique solution of

(3.13) such that

c7ϕ1 ≤ ζ ≤ c8ϕ1 in Ω, (3.14)

for some c7, c8 > 0. Note that qσ < p + 1, (3.14) and Lemma 2.1 imply ∆ζ ∈ L1(Ω).

Let A1 = max{1, 1
Cc7
}. Then

∆(A1ζ)− α(A1ζ) + m−q
2 ϕ−qσ

1 (A1ζ)p + ρ(x) ≤ 0 in Ωε.

Also by (2.1) and (3.14) we have

A1ζ ≥ A1c7ϕ1 ≥ A1Cc7d(x) ≥ ε on ∂Ωε.

Define

Ψ(x, t) = −αt + m−q
2 ϕ−qσ

1 (x)(A1t)
p + ρ(x), (x, t) ∈ Ωε × (0,∞).

Then Ψ satisfies the hypotheses in Lemma 2.2 and

∆(A1ζ) + Ψ(x,A1ζ) ≤ 0 ≤ ∆(Tu) + Ψ(x, Tu) in Ωε,

Tu, A1ζ > 0 in Ωε, Tu = ε ≤ A1ζ on Ωε,

∆(A1ζ) ∈ L1(Ωε).

By Lema 2.2 it follows that Tu ≤ A1ζ in Ωε. In view of (3.14), let us take

M1 := max{1, A1c8} in the definition of the set Aε. Then M1 does not depend on

ε and by (3.14) we have

Tu ≤ M1ϕ1 in Ωε.

The definition of Aε yields u ≤ M1ϕ1 in Ωε. Then, the second equation of system (3.4)

produces

∆(Tv)− β(Tv) +
M r

1ϕr
1

(Tv)s
≥ 0 in Ωε. (3.15)

Let A2 = max{1, M r
1 , 1

c5
}. If ξ is the unique solution of (3.7), then

∆(A2ξ)− β(A2ξ) + M r
1ϕr

1(A2ξ)
−s ≤ 0 in Ωε,

and, by (3.9) we also have

A2ξ ≥ A2c5Γs,r(d(x)) ≥ Γs,r(ε) on ∂Ωε.

Therefore, by Lemma 2.3 it follows that Tv ≤ A2ξ in Ωε. Now, we take M2 :=

max{1, A2c4} in the definition of the set Aε. It follows that M2 is independent of ε

and, by virtue of (3.8), we obtain Tv ≤ M2Γs,r(ϕ1) in Ωε. This finishes the proof of our

Lemma 3.1.
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Lemma 3.2. The mapping T : Aε → Aε defined in (3.3)-(3.4) is compact and

continuous.

Proof. Let us fix (u, v) ∈ Aε. Then u, v, Tu and Tv are bounded away from zero in

Ωε which yields

∥∥∥∥
(Tu)p

vq

∥∥∥∥
L∞(Ωε)

,

∥∥∥∥
ur

(Tv)s

∥∥∥∥
L∞(Ωε)

≤ cε = c(ε,m1,m2,M1.M2, p, q, r, s).

Hence, by Hölder estimates, for all τ > N we obtain

‖Tu‖W 2,τ (Ωε), ‖Tv‖W 2,τ (Ωε) ≤ c1,ε,

for some c1,ε > 0 independent of u and v. Since the embedding W 2,τ (Ωε) ↪→ C1,γ(Ωε) ,

0 < γ < 1−N/τ is compact, we derive that the mapping T : Aε → Aε ⊂ C(Ωε)×C(Ωε)

is also compact.

It remains to prove that T is continuous. To this aim, let {(un, vn)}n≥1 ⊂ Aε be

such that un → u and vn → v in C(Ωε) as n → ∞. Since T is compact, there exists

(U, V ) ∈ Aε such that up to a subsequence we have

T (un, vn) → (U, V ) in Aε as n →∞.

Using the L∞(Ωε) bounds of
(

(Tun)p

vq
n

)
n≥1

and
(

ur
n

(Tvn)s

)
n≥1

, it follows that (Tun)n≥1

and (Tvn)n≥1 are bounded in W 2,τ (Ωε) for all τ > N . As before, this implies that

(Tun)n≥1 and (Tvn)n≥1 are bounded in C1,γ(Ωε) (0 < γ < 1−N/τ). Next, by Schauder

estimates, it follows that (Tun)n≥1 and (Tvn)n≥1 are bounded in C2,γ(Ωε). Since C2,γ(Ωε)

is compactly embedded in C2(Ωε), we deduce that up to a subsequence, we have that

Tun → U and Tvn → V in C2(Ωε) as n →∞.

Passing to the limit in (3.4) we get that (U, V ) satisfies





∆U − αU +
Up

vq
+ ρ(x) = 0, U > 0 in Ωε,

∆V − βV +
ur

V s
= 0, V > 0 in Ωε,

U = ε, V = Γs,r(ε) on ∂Ωε.

Using the uniqueness of (3.4), it follows that Tu = U and Tv = V . Thus, we

have obtained that any subsequence of {T (un, vn)}n≥1 has a subsequence converging

to T (u, v) in Aε. But this implies that the entire sequence {T (un, vn)}n≥1 converges to

T (u, v) in Aε, whence the continuity of T . The proof of Lemma 3.2 is now complete.

Proof of Theorem 1.1 completed

According to Lemma 3.1 and 3.2 we are now in position to apply the Schauder’s

fixed point theorem. Thus, for all 0 < ε < ε0, there exists (uε, vε) ∈ Aε such
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that T (uε, vε) = (uε, vε). By standard elliptic regularity arguments, we deduce

uε, vε ∈ C2(Ωε). Therefore, for all 0 < ε < ε0 we have proved the existence of a solution

(uε, vε) ∈ C2(Ωε) × C2(Ωε) of system (3.2). Next, we extend uε = ε, vε = Γs,r(ε) in

Ω \ Ωε. Furthermore, by the definition of Aε we have

m1ϕ1 ≤ uε ≤ M1ϕ1 + ε ≤ M1ϕ1 + ε0 in Ω, (3.16)

m2Γs,r(ϕ1) ≤ vε ≤ M2Γs,r(ϕ1) + Γs,r(ε) ≤ M1ϕ1 + cε0 in Ω. (3.17)

As above, L∞ bounds together with Hölder estimates yield (uε)0<ε<ε0 , (vε)0<ε<ε0 are

bounded in W 2,τ
loc (Ω), for all τ > N . With similar arguments, there exist u, v ∈ C2(Ω)

such that for all ω ⊂⊂ Ω, (uε)0<ε<ε0 and (vε)0<ε<ε0 converge up to a subsequence to u

and v respectively in C2(ω) as ε → 0. Passing to the limit with ε → 0 in (3.2) and

(3.16)-(3.17) we get 



∆u− αu +
up

vq
+ ρ(x) = 0 in Ω,

∆v − βv +
ur

vs
= 0 in Ω,

and

m1ϕ1 ≤ u ≤ M1ϕ1 in Ω, (3.18)

m2Γs,r(ϕ1) ≤ v ≤ M2Γs,r(ϕ1) in Ω. (3.19)

Now, we extend u = v = 0 on ∂Ω. From (3.18) and (3.19) we deduce that u, v ∈ C(Ω).

Hence, the system (0.3) has a classical solution (u, v).

It remains to establish the boundary estimates of the solution to (0.3). This follows

essentially by using the same arguments as above. Let (u, v) be an arbitrary solution of

(0.3). Then ∆u − αu + ρ(x) ≤ 0 in Ω which implies that u ≥ w in Ω, where w is the

unique solution of (2.5). By (2.6) it follows that u ≥ c1ϕ1 in Ω. Using this inequality

in the second equation of (0.3) we deduce ∆v − βv + c2ϕ
r
1v
−s ≤ 0 in Ω for some c2 > 0

(we actually have c2 = cr
1 > 0). Next, let ξ be the unique solution of (3.7). A similar

argument to that used in Step 1 yields v ≥ c3ξ in Ω. In view of estimate (2.20) in

Proposition 2.5 we derive that v ≥ c4Γs,r(ϕ1) in Ω for some c4 > 0. According to (2.18)

it follows that v ≥ c5ϕ
σ
1 in Ω. This inequality combined with the first equation in system

(0.3) produces ∆u− αu + c6ϕ
−qσ
1 up + ρ(x) ≥ 0 in Ω.

Consider the problem



∆z − αz + c6ϕ
−qσ
1 zp + ρ(x) = 0 in Ω,

z > 0 in Ω,

z = 0 on ∂Ω.

(3.20)

Since qσ < p + 1, by Proposition 2.4 there exists a unique solution of (3.20) such that

z ≤ c7ϕ1 in Ω. Thus, by Lemma 2.2 we get u ≤ z ≤ c7ϕ1 in Ω. Using this last inequality

in the second equation of (0.3) we finally obtain ∆v − βv + c8ϕ
r
1v
−s ≥ 0 in Ω for some

c8 > 0. By virtue of Proposition 2.5 we have v ≤ c9Γs,r(ϕ1) in Ω. Thus, we have

obtained

m1ϕ1 ≤ u ≤ m2ϕ1 in Ω,
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m1Γs,r(ϕ1) ≤ u ≤ m2Γs,r(ϕ1) in Ω,

for some fixed constants m1,m2 > 0. Now, the boundary estimates in Theorem 1.1

follows from the above inequalities combined with (2.1). This concludes the proof.

3.2. Proof of Corollary 1.2

Let (u, v) be a classical solution of (0.3). We rewrite the system (0.3) in the form

∆u = f1(x) in Ω, ∆v = f2(x) in Ω, u = v = 0 on ∂Ω,

where

f1(x) = αu(x)− up(x)

vq(x)
− ρ(x), f2(x) = βv(x)− ur(x)

vs(x)
, for all x ∈ Ω.

Note that in our settings we have σ = 1 in (1.2) and by virtue of Theorem 1.1 there

exist c1, c2 > 0 such that c1d(x) ≤ u, v ≤ c2d(x) in Ω. Hence,

|f1(x)| ≤ m1d
p−q(x)+ρ(x) in Ω and |f2(x)| ≤ m2d

r−s(x) in Ω.(3.21)

(i) Since 0 ≤ p− q and 0 ≤ r− s, by (3.21) we get f1, f2 ∈ L∞(Ω). Next, standard

elliptic arguments leads us to u, v ∈ C2(Ω).

(ii) Let us assume that −1 < p− q < 0 and −1 < r− s < 0. From (3.21) we derive

|f1(x)| ≤ cdp−q(x) in Ω and |f2(x)| ≤ cdr−s(x) in Ω,

for some positive constant c > 0.

If N = 1 then, for all x1, x2 ∈ Ω we have

|u′(x1)− u′(x2)| ≤
∣∣∣∣
∫ x2

x1

|f1(t)|dt

∣∣∣∣ ≤ c

∣∣∣∣
∫ x2

x1

dp−q(t)dt

∣∣∣∣ ≤ c̃|x1 − x2|1+p−q,

where c̃ > 0 does not depend on x1, x2 . This yields u ∈ C1,1+p−q(Ω) and similarly

v ∈ C1,1+r−s(Ω).

If N ≥ 2, the conclusion follows exactly in the same way as in [9]. More precisely,

let G denote the Green’s function for the Laplace operator. Then for all x ∈ Ω we have

u(x) =

∫

Ω

G(x, y)f1(y)dy, v(x) =

∫

Ω

G(x, y)f2(y)dy,

and

∇u(x) =

∫

Ω

Gx(x, y)f1(y)dy, ∇v(x) =

∫

Ω

Gx(x, y)f2(y)dy.

Then, for all x1, x2 ∈ Ω, x1 6= x2 we have

|∇u(x1)−∇u(x2)| ≤
∫

Ω

|Gx(x1, y)− Gx(x2, y)||f1(y)|dy

≤ c

∫

Ω

|Gx(x1, y)− Gx(x2, y)|dp−q(y)dy,
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and similarly

|∇v(x1)−∇v(x2)| ≤ c

∫

Ω

|Gx(x1, y)− Gx(x2, y)|dr−s(y)dy.

From now on, we need only to employ the sharp estimates given in [9, Theorem 1.1]

in order to obtain u ∈ C1,1+p−q(Ω) and v ∈ C1,1+r−s(Ω). This finishes the proof of

Corollary 1.2.

3.3. Proof of Theorem 1.3

Let (u, v) be a classical solution of (1.3). Then, by virtue of Corollary 1.2, we have

u, v ∈ C2[0, 1]× C2[0, 1] if 0 ≤ p− q, 0 ≤ r − s,

and

u ∈ C2(0, 1) ∩ C1,1+p−q[0, 1], v ∈ C2(0, 1) ∩ C1,1+r−s[0, 1],

if −1 < p− q < 0, −1 < r− s < 0. Furthermore, by Hopf’s maximum principle we also

have that u′(0) > 0, v′(0) > 0, u′(1) < 0 and v′(1) < 0.

Assume that there exist (u1, v1) and (u2, v2) two different solutions of (1.3).

First we claim that we can not have u2 ≥ u1 or v2 ≥ v1 in [0,1]. Assume by

contradiction that u2 ≥ u1 in [0,1]. Then

v′′2 − βv2 +
ur

2

vs
2

= 0 = v′′1 − βv1 +
ur

1

vs
1

in (0, 1),

and by Lemma 2.3 we get v2 ≥ v1 in [0, 1]. This implies that

u′′1 − αu1 +
up

1

vq
2

+ ρ(x) ≤ 0 = u′′2 − αu2 +
up

2

vq
2

+ ρ(x) in (0, 1). (3.22)

On the other hand, the mapping Ψ(x, t) = −αt+ tp

vq
2(x)

+ρ(x), (x, t) ∈ (0, 1)×(0,∞)

satisfies the hypotheses in Lemma 2.2. Hence u2 ≤ u1 in [0, 1], that is u1 ≡ u2. This

also implies v1 ≡ v2, which is a contradiction. Replacing u1 by u2 and v1 by v2, we also

get that the situation u1 ≥ u2 or v1 ≥ v2 in [0,1] is not possible.

Set U = u2−u1 and V = v2−v1. From the above arguments, both U and V change

sign in (0, 1). The key result in our approach is the following.

Proposition 3.3. U and V vanish only at finitely many points in the interval [0, 1].

Proof. Subtracting the corresponding equations for (u1, v1) and (u2, v2) we obtain the

following linear problem{
W′′(x) + A(x)W(x) = 0 in (0, 1),

W(0) = W(1) = 0,
(3.23)
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where W = (U, V )T and A(x) = (Aij(x))1≤i,j≤2 is a 2× 2 matrix defined as

A11(x) = −α +





1

vq
2(x)

· up
2(x)− up

1(x)

u2(x)− u1(x)
, u1(x) 6= u2(x)

p
up−1

1 (x)

vq
1(x)

, u1(x) = u2(x)

A12(x) =





− up
1(x)

vq
1(x)vq

2(x)
· vq

2(x)− vq
1(x)

v2(x)− v1(x)
, v1(x) 6= v2(x)

−q
up

1(x)

vq+1
1 (x)

, v1(x) = v2(x)

A21(x) =





1

vs
2(x)

· ur
2(x)− ur

1(x)

u2(x)− u1(x)
, u1(x) 6= u2(x)

r
ur−1

1 (x)

vs
1(x)

, u1(x) = u2(x)

A22(x) = −β −





ur
1(x)

vs
1(x)vs

2(x)
· vs

2(x)− vs
1(x)

v2(x)− v1(x)
, v1(x) 6= v2(x)

s
ur

1(x)

vs+1
1 (x)

, v1(x) = v2(x).

Lemma 3.4. We have

(i) Aij ∈ C(0, 1), for all 1 ≤ i, j ≤ 2;

(ii) A12(x) 6= 0 and A21(x) 6= 0 for all x ∈ (0, 1);

(iii) d1−(p−q)(x)A1j ∈ L∞(0, 1) and d1−(r−s)(x)A2j ∈ L∞(0, 1), for j = 1, 2.

Proof. The claims in (i) and (ii) are easy to verify. We prove only the statement

in (iii). To this aim, let us notice first that by the regularity of solutions, there exist

c1, c2 > 0 such that

c1d(x) ≤ ui, vi ≤ c2d(x) in (0, 1), 1 ≤ i ≤ 2. (3.24)

By (3.24) and the fact that

|aq − bq| ≤ q|a− b|max{aq−1, bq−1} for all a, b > 0,

we have

d(x)|A12(x)| ≤ qd(x)
up

1(x)

vq
1(x)vq

2(x)
max{vq−1

1 (x), vq−1
2 (x)}

≤ qdp−q(x)

(
u1(x)

d(x)

)p

max

{(
d(x)

v1(x)

)q+1

,

(
d(x)

v2(x)

)q+1
}

≤ cdp−q(x) for all 0 < x < 1.

Hence d1−(p−q)(x)A12 ∈ L∞(0, 1). We obtain similar estimates for d1−(p−q)(x)A11 and

d1−(r−s)(x)A2j, j = 1, 2. This concludes the proof.

Next, Lemma 3.4 (i)-(ii) allows us to employ the following result which is proved

in [1, Lemma 7].
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Lemma 3.5. (see [1]) Let 0 < a < b < 1 and A = (Aij)1≤i,j≤2 be such that

(i) Aij ∈ C[a, b], for all 1 ≤ i, j ≤ 2;

(ii) A12(x) 6= 0 and A21(x) 6= 0 for all x ∈ [a, b].

Assume that there exists W = (U, V )T ∈ C2[a, b] × C2[a, b] such that W 6≡ 0 and

W′′(x)+A(x)W(x) = 0 in [a, b]. Then, neither U nor V can have infinitely many zeros

in [a, b].

As a consequence, we deduce that if W is a solution of (3.23) and W vanishes for

infinitely many times in an interval [a, b] ⊂ (0, 1) then, applying Lemma 3.5 in [ε, 1− ε]

for all ε > 0 sufficiently small, we get W ≡ 0.

It remains to show that U and V can not vanish for infinitely many times in the

neighborhood of x = 0 and x = 1. We shall consider only the case x = 0, the situation

where U or V have infinitely many zeros near x = 1 can be handled in the same manner.

Without loosing the generality, we may assume that V has infinitely many zeros in

a neighborhood of x = 0. By the continuity of V it follows that V (0) = 0. Furthermore,

since V ∈ C2(0, 1) ∩ C1[0, 1], by Rolle’s Theorem we get that both V ′ and V ′′ have

infinitely many zeros near x = 0. Therefore, V ′(0) = 0, that is, v′1(0) = v′2(0).

If U ′(0) = 0, then W(0) = W′(0) = 0. Let γ = min{0, p − q, r − s}. Then

−1 < γ ≤ 0 and by Lemma 3.4 (iii) it follows that x1−γAij ∈ L∞(0, 1/2). Thus, we

can use Proposition 4.2 in the Appendix in order to get that W ≡ 0 in [0, 1/2]. Then,

by Lemma 3.5 we obtain W ≡ 0 in [0, 1], which is a contradiction. Hence U ′(0) 6= 0.

Subtracting the second equation corresponding to v1 and v2 in the system (1.3) we have

V ′′(x) = βV (x) +
ur

1(x)

vs
1(x)

− ur
2(x)

vs
2(x)

= xr−s

{
β

V (x)

xr−s
+

(
u1(x)

x

)r (
x

v1(x)

)s

−
(

u2(x)

x

)r (
x

v2(x)

)s}
.

Since r − s < 1, v′1(0) = v′2(0) > 0 and u′1(0) 6= u′2(0) we get

lim
x→0+

{
β

V (x)

xr−s
+

(
u1(x)

x

)r (
x

v1(x)

)s

−
(

u2(x)

x

)r (
x

v2(x)

)s}

=
u′r1 (0)− u′r2 (0)

v′s1 (0)
6= 0.

From the above equalities we derive that V ′′ has constant sign in a small neighborhood

of x = 0 which contradicts the fact that V vanishes for infinitely many times in the

neighborhood of x = 0. This finishes the proof of Proposition 3.3.

Proof of Theorem 1.3 completed.

Let us define

I+ = {x ∈ [0, 1] : U(x) ≥ 0}, I− = {x ∈ [0, 1] : U(x) ≤ 0},

J + = {x ∈ [0, 1] : V (x) ≥ 0}, J − = {x ∈ [0, 1] : V (x) ≤ 0}.
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Since both U and V have a finite number of zeros, it follows that the above sets

consist of finitely many disjoint closed intervals. Therefore, I+ = ∪m
i=1I

+
i . For our

convenience, let I+ denote any interval I+
i and similar notations will be used for I−, J+

and J−. We have

Lemma 3.6. For all intervals I+, I−, J+ and J− defined above, the following situations

can not occur:

(i) I+ ⊂ J+; (ii) I− ⊂ J−; (iii) J+ ⊂ I−; (iv) J− ⊂ I+.

Proof. (i) Assume by contradiction that I+ ⊂ J+. This yields u2 ≥ u1 and v2 ≥ v1 in

I+. Furthermore we have

u′′1 − αu1 +
up

1

vq
2

+ ρ(x) ≤ 0 = u′′2 − αu2 +
up

2

vq
2

+ ρ(x) in I+,

u1, u2 > 0 in I+, u1 = u2 = 0 on ∂I+, u′′1 ∈ L1(0, 1).

Thus, by Lemma 2.2 with Ψ(x, t) = −αt + tp

vq
2(x)

+ ρ(x), (x, t) ∈ I+ × (0,∞), it follows

that u2 ≤ u1 in I+. Since u2 ≥ u1 in I+, we deduce u1 = u2 in I+, that is, U ≡ 0

which contradicts Proposition 3.3. Replacing u1, v1 with u2, v2 in the above arguments

we deduce the statement (ii).

(iii) Suppose that J+ ⊂ I−. Then v2 ≥ v1 and u1 ≥ u2 in J+ which yield

ur
1

vs
1

≥ ur
2

vs
2

in J+.

Hence V = v2 − v1 satisfies




V ′′ − βV =
ur

1

vs
1

− ur
2

vs
2

≥ 0 in J+,

V = 0 on ∂J+.

Therefore, by maximum principle, we have V ≤ 0 in J+. Since V ≥ 0 in J+, it follows

that V ≡ 0 in J+ which again contradicts Proposition 3.3. The proof of (iv) follows in

a similar way.

From now on, the proof of Theorem 1.3 follows in the same manner as in [1, Theorem

6].

4. Case p < 0

4.1. Proof of Theorem 1.4.

Assume that the system (0.3) has a classical solution (u, v) and set M = ‖u‖∞. Then

v satisfies

∆v − βv + c1v
−s ≥ 0 in Ω,



Steady-state solutions for Gierer-Meinhardt systems 22

where c1 = M r > 0. By Lemma 2.3 we get v ≤ z, where z is the unique solution of the

problem 



∆z − βz + c1z
−s = 0 in Ω,

z > 0 in Ω,

z = 0 on ∂Ω.

Furthermore, from the estimate (2.20) in Proposition 2.5 (with r = 0) there exists c2 > 0

such that v ≤ z ≤ c2Γs,0(ϕ1) in Ω, which yields




v ≤ c2ϕ1 in Ω if s < 1,

v ≤ c2ϕ1(1 + | log ϕ1|)1/(1+s) in Ω if s = 1,

v ≤ c2ϕ
2/(1+s)
1 in Ω if s > 1.

(4.1)

If s = 1 and q > 2, we fix 0 < θ < 1 such that qθ ≥ 2. Let us set

k =





1, if s < 1,

θ, if s = 1,

2/(s + 1), if s > 1.

Then qk ≥ 2 and by (4.1) we get v ≤ c3ϕ
k
1 in Ω, for some c3 > 0. Using this inequality

in the first equation of (0.3) we deduce ∆u − αu + cϕ−qk
1 up + ρ(x) ≤ 0 in Ω, where

c = c−q
3 . This means that u is a super-solution of the following problem




∆z − αz + cϕ−qk
1 zp + ρ(x) = 0 in Ω,

z > 0 in Ω,

z = 0 on ∂Ω.

(4.2)

Note that w ∈ C2(Ω) defined as the unique solution of (2.5) is a sub-solution of (4.2).

By standard maximum principle it is easy to get u ≥ w in Ω. Hence, the problem (4.2)

has classical solutions, but this contradicts Proposition 2.5 (i), since qk ≥ 2. Therefore,

the system (0.3) has no solutions. The proof of Theorem 1.4 is now complete.

4.2. Proof of Theorem 1.5

For all 0 < ε < ε0 let Ωε be defined as in (3.1). For m1 < 1 < M1 and m2 < 1 < M2 we

consider the set Bε of all (u, v) ∈ C(Ωε)× C(Ωε) such that

m1ϕ1 ≤ u ≤ M1ϕ
ν
1 in Ωε,

m2Γs,r(ϕ1) ≤ v ≤ M2ϕ
τ
1 in Ωε,

u = ε, v = Γs,r(ε) on ∂Ωε,

where

ν =





1, if qσ < 1 + p

1/2, if qσ = 1 + p
2− qσ

1− p
, if qσ > 1 + p

and τ =





1, if s < 1 + rν

1/2, if s = 1 + rν
2 + rν

1 + s
, if s > 1 + rν

.(4.3)
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In order to prove that Bε is not empty, we first remark that ν ≤ 1. Therefore, we

only need to check that

Γs,r(t) ≤ c0t
τ for all 0 < t ≤ 1, (4.4)

for some fixed c0 > 0. To this aim we analyze the cases s < 1+r, s = 1+r and s > 1+r.

If s < 1 + r, since τ ≤ 1 we have Γs,r(t) = t ≤ tτ for all 0 < t ≤ 1.

If s > 1 + r, from ν ≤ 1 we have s > 1 + rν which implies τ = 2+rν
1+s

≤ 2+r
1+s

. Hence

Γs,r(t) = t(2+r)/(1+s) ≤ t(2+rν)/(1+s) = tτ for all 0 < t ≤ 1.

Finally, if s = 1 + r then s ≥ 1 + rν which implies τ = 1/2 or τ = 2+rν
1+s

. In both

cases we have τ < 1. Then

Γs,r(t) = t(1 + | ln t|)1/(1+s) ≤ c0t
τ for all 0 < t ≤ 1,

and for some fixed c0 > 0.

Remark 4.1. Since tθ(1 + | log t|)1/(s+1) → 0 as t → 0, for all θ > 0, we could replace

the value 1/2 in the definition of ν and τ by any number θ ∈ (0, 1) in the case qσ = p+1

and s = 1 + rν respectively.

Therefore, for small 0 < m1,m2 < 1 and for large values of M1,M2 > 1 the set Bε

is not empty.

As in the previous section, for all (u, v) ∈ Bε let us denote by (Tu, Tv) the unique

solution of 



∆(Tu)− α(Tu) +
(Tu)p

vq
+ ρ(x) = 0, Tu > 0 in Ωε,

∆(Tv)− β(Tv) +
ur

(Tv)s
= 0, T v > 0 in Ωε,

Tu = ε, Tv = Γs,r(ε) on ∂Ωε.

(4.5)

In this way we have defined a mapping

T : Bε → C(Ωε)× C(Ωε), T (u, v) = (Tu, Tv).

Now, we proceed as in the proof of Theorem 1.1. The main point is to show that there

exist 0 < m1,m2 < 1 and M1,M2 > 1 which are independent of ε such that T (Bε) ⊆ Bε.

This allows us to employ the Schauder’s fixed point theorem.

Following the proof of Lemma 3.1 we get the existence of m1, m2 ∈ (0, 1) which are

independent of ε and such that

Tu ≥ m1ϕ1, T v ≥ m2Γs,r(ϕ1) in Ωε.

Since Γs,r(t) ≥ tσ for all 0 < t ≤ 1, the definition of Bε yields v ≥ m2ϕ
σ
1 in Ωε.

Furthermore, the first equation in (4.5) produces

∆(Tu)− α(Tu) + m−q
2 ϕ−qσ

1 (Tu)p + ρ(x) ≥ 0 in Ωε.
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Let ζ ∈ C2(Ω) ∩ C(Ω) be the unique solution of (3.13). Since p < 0 and qσ < 2, we

shall make use of Proposition 2.5 (ii) instead of Proposition 2.4 as we did in the proof

of Theorem 1.1. Therefore, there exist c1, c2 > 0 such that

c1Γ−p,−qσ(ϕ1) ≤ ζ ≤ c2Γ−p,−qσ(ϕ1) in Ω. (4.6)

Note that Γ−p,−qσ(t) ≥ t for all 0 < t ≤ 1. Hence, by (2.1) and (4.6) we get

ζ ≥ c1ϕ1 ≥ Cc1d(x) in Ω.

Let us fix A > 1 such that ACc1 > 1. Since p < 0 we find

∆(Aζ)− α(Aζ) + m−q
2 ϕ−qσ

1 (Aζ)p + ρ(x) ≤ 0 in Ωε,

Aζ ≥ ε = Tu on ∂Ωε.

In view of Lemma 2.3 we derive Aζ ≥ Tu in Ωε and by (4.6) it follows that

Tu ≤ Ac2Γ−p,−qσ(ϕ1) in Ωε.

Note that Γ−p,−qσ(t) ≤ c̃tν for all 0 < t ≤ 1 and for some fixed constant c̃ > 0. Therefore,

we can find M1 > 1 sufficiently large such that Tu ≤ M1ϕ
ν
1 in Ωε.

Using the estimate u ≤ M1ϕ
ν
1 in Ωε, from the second equation in (4.5) we deduce

∆(Tv)− β(Tv) + M r
1ϕrν

1 (Tv)−s ≥ 0 in Ωε.

Since ν ≤ 1, we can easily prove that Γs,r(t) ≤ c0Γs,rν(t), for all 0 < t ≤ 1 and for

some positive constant c0. This implies that

Tv = Γs,r(ε) ≤ c0Γs,rν(ε) on ∂Ωε.

Next, similar arguments to those in the proof of Lemma 3.1 yield Tv ≤ cΓs,rν(ϕ1) in

Ωε. It remains to notice that Γs,rν(t) ≤ c̄tτ for all 0 < t ≤ 1 and for some c̄ > 0. Hence,

Tv ≤ M2ϕ
τ
1 in Ωε for some M2 > 1 independent of ε. Therefore T (Bε) ⊆ Bε. From now

on, we proceed exactly in the same way as in the proof of Theorem 1.1.

Assume next that q < p + 1 and s < r + 1. Then, by (1.2) and (4.3) we get

σ = ν = τ = 1. With the same arguments as in the proof of Theorem 1.1 we

get m1d(x) ≤ u, v ≤ m2d(x) in Ω, for some m1,m2 > 0 and for all solutions (u, v)

of (0.3). Then we use the same approach as in Corollary 1.2 in order to get that

u, v ∈ C2(Ω)∩C1,γ(Ω), for some 0 < γ < 1. This finishes the proof of Theorem 1.5.

Remark. The approach used in this paper can be employed to extend the study of

system (0.3) to the following class of exponents

0 ≤ p < 1, 0 < q < p + 1, r > 0, −1 < s ≤ 0.

In this sense, we need the smooth variant of Proposition 2.5 concerning the sublinear

case −1 < s ≤ 0. Taking into account the fact that r > 0, if −1 < s ≤ 0 then the
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problem (2.15) has a unique solution v ∈ C2(Ω). One can show that system (0.3) has

classical solutions and any solution (u, v) of (0.3) satisfies

c1d(x) ≤ u, v ≤ c2d(x) in Ω,

for some c1, c2 > 0. Furthermore, with the same idea as in the proof of Corollary 1.2 we

get

(i) if p ≥ q then u, v ∈ C2(Ω);

(ii) if −1 < p− q < 0 then u ∈ C2(Ω) ∩ C1,1+p−q(Ω) and v ∈ C2(Ω).

Appendix

In this part we prove a result which generalizes Lemma 8 in [1]. More precisely we have

Proposition 4.2. Let 0 < a < 1, −1 < γ ≤ 0 and A = (Aij)1≤i,j≤2 be a 2 × 2 matrix

such that for all 1 ≤ i, j ≤ 2 we have

Aij ∈ C(0, a] and x1−γAij ∈ L∞(0, a).

Assume that there exists W = (W1,W2)
T ∈ (C2(0, a] ∩ C1[0, a])2 a solution of

{
W′′(x) + A(x)W(x) = 0 in (0, a],

W(0) = W′(0) = 0.

Then W ≡ 0 in [0, a].

Proof. First we need the following result whose proof is a simple exercise of calculus.

Lemma 4.3. Let f ∈ C(0, a] ∩ L1+δ(0, a) for some a, δ > 0 and u ∈ C2(0, a] ∩ C1[0, a]

be such that u(0) = u′(0) = 0 and u′′ = f in (0, a). Then

u(x) =

∫ x

0

(x− t)f(t)dt, for all 0 ≤ x ≤ a.

Since W ∈ C1[0, 1] × C1[0, 1] we have AW ∈ C(0, a] ∩ L1+δ(0, a) provided that

0 < δ < −1− γ−1. Therefore, by Lemma 4.3 we get

W(x) = −
∫ x

0

(x− t)A(t)W(t)dt for all 0 ≤ x ≤ a. (4.7)

Define B = (Bij)1≤i,j≤2 by Bij(x) = x1−γAij(x), 0 < x ≤ a, 1 ≤ i, j ≤ 2. Then

Bij ∈ C(0, a] ∩ L∞(0, a). Set

M = max
1≤i,j≤2

‖Bij‖∞, k = max

{ |W(x)|
x

; 0 < x ≤ a

}
,

where |W(x)| = max{ |W1(x)|, |W2(x)| }. Notice that both M and k are finite, since

W ∈ C1[0, a]. From (4.7) we have
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W(x) = −
∫ x

0

(x− t)B(t)
W(t)

t
tγdt for all 0 ≤ x ≤ a,

which yields

|W(x)| ≤ M

∫ x

0

(x− t)
|W(t)|

t
tγdt for all 0 ≤ x ≤ a. (4.8)

It follows that

|W(x)| ≤ Mk

∫ x

0

(x−t) tγdt =
Mk

(1 + γ)(2 + γ)
x2+γ for all 0 ≤ x ≤ a.(4.9)

Using (4.9) in (4.8) we obtain

|W(x)| ≤ M2k

(1 + γ)(2 + γ)

∫ x

0

(x− t)t1+2γdt

=
M2k

(1 + γ)(2 + γ)(2 + 2γ)(3 + 2γ)
x3+2γ

≤ M2k

2(1 + γ)2
x3+2γ for all 0 ≤ x ≤ a.

By induction, we deduce that for all n ≥ 2 we have

|W(x)| ≤ Mnk

n!(1 + γ)n
xn+1+nγ for all 0 ≤ x ≤ a.

Since −1 < γ ≤ 0, we can pass to the limit in the last inequality in order to get W ≡ 0.

This completes the proof.
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[3] L. Dupaigne, M. Ghergu, and V. Rădulescu, Lane-Emden-Fowler equations with convection and
singular potential , J. Math. Pures Appl. 87 (2007), 563–581. MR2335087
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