Stochastic Expectation-Maximization Methods for Sequential Inference in Missing Data Models

Florian Maire*, UCD

joint work with : Eric Moulines (Telecom Paris, Paris, France) Sidonie Lefebvre (ONERA, Palaiseau, France)

*started at ONERA & Telecom Paris

Working Group on Statistical Learning, 26th of February 2014

- 4 回 ト - 4 回 ト

1 Introduction: EM & Stochastic EM

2 Monte Carlo Online EM: a "practical" Sequential Stochastic EM

3 Inference of Functional Data

э

イロン イ理 とくほとう ほんし

Outlines

1 Introduction: EM & Stochastic EM

2 Monte Carlo Online EM: a "practical" Sequential Stochastic EM

3 Inference of Functional Data

э

Notations & main question

Observed data:

$$\{Y_1,\ldots,Y_n\} \stackrel{i.i.d.}{\sim} \mathbb{P}^*$$

P*: **unknown** (hypothetical) probability distribution on (Y, \mathcal{Y})

An observation model on (Y, \mathcal{Y})

$$\{Y_1,\ldots,Y_n\} \stackrel{i.i.d.}{\sim} \mathbb{P}_{\theta}$$

• \mathbb{P}_{θ} parameterized by $\theta \in \Theta$.

Question: how to find $\theta^{\star} \in \Theta$ s.t. $\mathbb{P}_{\theta^{\star}} \approx \mathbb{P}^{\star}$

F. Maire (UCD)

イロト 不得 トイラト イラト 一日

Missing Data Models

• Latent process: $\{X_n, n \in \mathbb{N}\}$ on (X, \mathcal{X})

• \mathbb{P}_{θ} : an **intractable** marginal of the complete data model

$$\forall A \in \mathcal{Y}, \quad \mathbb{P}_{\theta}[Y \in A] = \int_{A} \int p_{\theta}(y \mid x) p_{\theta}(x) \mathrm{d}x \mathrm{d}y \;.$$

Estimating θ ?

Maximum Likelihood Estimator (MLE):

$$heta^{\mathsf{MLE}} = rg\max_{\theta\in\Theta} \mathbb{P}[heta \mid Y_1, \dots, Y_n] = rg\max_{\theta\in\Theta} \prod_{k=1}^n \int p_{ heta}(Y_k \mid X_k) p_{ heta}(X_k) \mathrm{d}X_k \,.$$

 \implies Direct optimization methods cannot be used to reach $\theta^{\rm MLE}$

Assume an Exponential Model *i.e* :

$$\log p_{ heta}(x,y) = \psi(heta) + \langle S(x,y), \phi(heta)
angle \, ,$$

- $S : X \times Y \rightarrow S$, vector of sufficient statistics

- $\psi: \Theta \to \mathbb{R}, \ \phi: \Theta \to S$, differentiable functions
- $\langle \cdot, \cdot \rangle$: scalar product on S

(日)

Expectation-Maximization (Dempster et al., 1977)

• Assume $\{Y_1, \ldots, Y_n\} \in Y^n$ constantly available For all $(\theta, \theta') \in \Theta^2$

> $\mathbb{E}_{\theta}\left[\sum_{k=1}^{n} S(X_k, Y_k) \mid Y_k\right] \leq \mathbb{E}_{\theta'}\left[\sum_{k=1}^{n} S(X_k, Y_k) \mid Y_k\right]$ ↓ $\mathbb{P}[\theta \mid Y_1, \ldots, Y_n] < \mathbb{P}[\theta' \mid Y_1, \ldots, Y_n]$

<u>EM</u>: starting from some $\theta_0 \in \Theta$, $\{\theta_k, k \in \mathbb{N}^*\}$

(i)
$$s_i = \bar{s}(\theta_{i-1}) = \sum_{k=1}^n \mathbb{E}_{\theta_{i-1}} [S(X_k, Y_k) | Y_k]$$

(ii) $\theta_i = \bar{\theta}(s_i) = \arg \max \psi(\theta) + \langle s_i, \phi(\theta) \rangle$

$$\begin{array}{ll} \textit{ii}) \quad \theta_i = \theta(\textbf{s}_i) = \arg\max_{\theta \in \Theta} \psi(\theta) + \langle \textbf{s}_i, \phi(\theta) \\ \end{array}$$

Convergence

$$\theta_i \to \{\theta \in \Theta, \ \nabla_{\theta} \mathbb{P}[\theta \mid Y_1, \dots, Y_n] = 0\}.$$

F. Maire (UCD)

Stochastic Approximation EM (Delyon et al., 1999)

- In many situations $s_i = \mathbb{E}_{\theta_{i-1}}[S(X, Y) | Y]$ is intractable
- <u>SAEM</u>: given $\hat{\theta}_0 \in \Theta$, a stochastic sequence $\{\hat{\theta}_i, i \in \mathbb{N}^*\}$

(i)
$$\hat{s}_{i} = \hat{s}_{i-1} + \rho_{i} \left(\underbrace{\frac{1}{L} \sum_{k=1}^{n} \sum_{\ell=1}^{L} S(X_{k}^{(\ell)}, Y_{k})}_{\downarrow L \to \infty} - \hat{s}_{i-1} \right), X_{k}^{(\ell)} \sim p_{\hat{\theta}_{i-1}}(\cdot | Y_{k}), \sum_{k=1}^{n} \mathbb{E}_{\hat{\theta}_{i-1}}[S(X_{k}, Y_{k}) | Y_{k}]$$

(*ii*) $\hat{\theta}_i = \bar{\theta}(\hat{s}_i)$

• Convergence: under mild assumptions on $\{\rho_i, i \in \mathbb{N}\}$

$$\hat{\theta}_i \to \{\theta \in \Theta, \ \nabla_{\theta} \mathbb{P}[\theta \mid Y_1, \dots, Y_n] = 0\}$$

イロト 不得 トイラト イラト 一日

Sequential Inference Framework

Sequential (or Online) as opposed to Batch (or Bloc) methods
Only one observation at a time {Y_t, t ∈ N}

the *t*-th iteration will happen when Y_t becomes available...
 ... and will produce a new estimate θ̂_t "better" than θ̂_{t-1}

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Motivations behind Sequential Inference?

- Storage issue (especially for big data s.t. images...)
- Computational aspect:
 - in batch setting: compute (or estimate) <u>n</u> conditional expectations
- Complexity of the method independent of *n*!
- First EM iteration will use <u>all</u> the data while $\hat{\theta}_0$ is a random guess!
- Tracking any trend on the data...

- 4 回 ト 4 三 ト 4 三 ト

Online EM (Cappé & Moulines, 2008)

• Online EM: given $\hat{\theta}_0 \in \Theta$, a stochastic sequence $\{\hat{\theta}_t, t \in \mathbb{N}^*\}$

(i)
$$\hat{\mathbf{s}}_t = \hat{\mathbf{s}}_{t-1} + \rho_t \left(\mathbb{E}_{\hat{\theta}_{t-1}} \left[S(X_t, Y_t) \mid Y_t \right] - \hat{\mathbf{s}}_{t-1} \right)$$

(*ii*)
$$\hat{\theta}_t = \bar{\theta}(\hat{s}_t)$$
.

■ MLE non-sense in sequential context: other dissimilarity measure between \mathbb{P}^* and \mathbb{P}_{θ}

$$\mathsf{KL}\left(\mathbb{P}^{\star} \, \| \, \mathbb{P}_{ heta}
ight) = \mathbb{E}^{\star}\left[rac{\mathbb{P}^{\star}(Y)}{\mathbb{P}_{ heta}(Y)}
ight]$$

Convergence of Online EM (under "reasonable" conditions)

$$\hat{\theta}_t \to \{ \theta \in \Theta, \ \nabla_{\theta} \mathsf{KL} \left(\mathbb{P}^{\star} \, \| \, \mathbb{P}_{\theta} \right) = \mathsf{0} \}$$

(日)

More questions...

Online EM allows sequential inference in missing data models...

• ... but what if $\mathbb{E}_{\hat{\theta}_{t-1}}[S(X_t, Y_t) | Y_t]$ is intractable?

Any possible extension of the Online EM?

Theoretical justification behind it?

イロト 不得 トイラト イラト 一日

Outlines

I Introduction: EM & Stochastic EM

2 Monte Carlo Online EM: a "practical" Sequential Stochastic EM

3 Inference of Functional Data

э

Monte Carlo Online EM (MCoEM)

• Monte Carlo EM: given $\tilde{\theta}_0 \in \Theta$, a stochastic sequence $\{\tilde{\theta}_t, t \in \mathbb{N}^*\}$

(i)
$$\tilde{s}_t = \tilde{s}_{t-1} + \rho_t \left(\underbrace{\frac{1}{L} \sum_{\ell=1}^{L} S(X_t^{(\ell)}, Y_t)}_{\downarrow \ell \to \infty} - \tilde{s}_{t-1} \right), X_t^{(\ell)} \sim p_{\tilde{\theta}_{t-1}}(\cdot \mid Y_t),$$

 $\underset{\tilde{\theta}_{\tilde{\theta}_{t-1}}[S(X_t, Y_t) \mid Y_t]}{\downarrow L \to \infty}$

(ii) $\tilde{\theta}_t = \bar{\theta}(\tilde{s}_t)$.

MCoEM: equivalent of the SAEM for the sequential settings.

イロン イヨン イヨン

Illustration on a Mixture of Gaussian regression

- $\blacksquare \text{ Let } \left\{ \begin{array}{ll} I \in \{1,2\} & \text{mixture index} \\ \beta \in \mathbb{R} & \text{auxiliary variable} \\ Y \in \mathbb{R} & \text{observation} \end{array} \right.$
- At time *t*, we simulate

(i)
$$I_t = i \sim \omega_i$$

(ii) $\beta_t | I_t = i \sim \mathcal{N}(\mu_i, \gamma^2)$
(iii) $Y_t | I_t = i, \beta_t \sim \mathcal{N}(\Phi_{\beta_t}\alpha_i, \sigma_i^2)$
with $\Phi_{\beta} = (1, \beta, \beta^2/10)$ and $\{\alpha_i \in \mathbb{R}^3\}_{i=1}^2$
Sufficient Statistics $S(i, \beta, Y) = \begin{pmatrix} \delta_{i=1} (\Phi_{\beta}^{\mathsf{T}} Y, \Phi_{\beta}^{\mathsf{T}} \Phi_{\beta})^{\mathsf{T}} \\ \delta_{i=2} (\Phi_{\beta}^{\mathsf{T}} Y, \Phi_{\beta}^{\mathsf{T}} \Phi_{\beta})^{\mathsf{T}} \end{pmatrix}$

- Two learning setups
 - LS-1 Observations: (Y_n, β_n) Missing data: I_n
 - LS-2 Observations: Y_n Missing data: (β_n, I_n)

Comparison Online EM / MCoEM (LS-1)

Online EM

$$\hat{s}_{t} = \hat{s}_{t-1} + \rho_{t} \left(\mathbb{E}_{\hat{\theta}_{t-1}} \left[S(I, \beta, Y) \mid Y_{t}, \beta_{t} \right] - \hat{s}_{t-1} \right) ,$$

$$\mathbb{E}_{\hat{\theta}_{t-1}}\left[S_{j}(I,\beta,\mathbf{Y}) \mid \mathbf{Y}_{t},\beta_{t}\right] \propto \exp\left\{-(1/2)\frac{(\mathbf{Y}_{t}-\Phi_{\beta_{t}}\hat{\alpha}_{j,t-1})^{2}}{\sigma_{j}^{2}}\right\}S^{*}(\mathbf{Y}_{t},\beta_{t})$$

Monte Carlo Online EM

$$\tilde{s}_{t} = \tilde{s}_{t-1} + \rho_{t} \left(\frac{1}{L} \sum_{\ell=1}^{L} S(I_{t}^{(\ell)}, \beta_{t}, \mathbf{Y}_{t}) - \tilde{s}_{t-1} \right), \ I_{t}^{(\ell)} \stackrel{i.i.d.}{\sim} \mathbb{P}_{\tilde{\theta}_{t-1}}[\cdot \mid \beta_{t}, \mathbf{Y}_{t}],$$

э

イロト イヨト イヨト イヨト

Comparison Online EM / MCoEM (LS-1)

500 runs of 10000 iterations of the two methods $\begin{cases} Online EM \\ MC Online EM \\ with L = 1, 10 \& 100 \end{cases}$

Estimation of α_{1,1}

Estimation of α_{2,1}

< □ > < □ > < □ > < □ > < □ > < □ >

MCoEM (LS-2)

In this case, the Online EM cannot be implemented...

$$e.g : \mathbb{E}_{\hat{\theta}_{t-1}}\left[\mathbb{1}_{\{j\}}(I)\Phi_{\beta}^{\mathsf{T}}\Phi_{\beta} \mid \mathbf{Y}_{t}\right] = \int \Phi_{\beta}^{\mathsf{T}}\Phi_{\beta}p_{\hat{\theta}_{t-1}}(j, \mathrm{d}\beta \mid \mathbf{Y}_{t})$$

... but MCoEM might still be!

- $(I_t^{(\ell)}, \beta_t^{(\ell)}) \stackrel{i.i.d.}{\not\sim} p_{\hat{\theta}_{t-1}}(\cdot | Y_t)$
- $(I_t^{(\ell)}, \beta_t^{(\ell)}) \sim K_{\hat{\theta}_{t-1}}(I_t^{(\ell-1)}, \beta_t^{(\ell-1)}; \cdot | Y_t)$
- *K*: Markov transition kernel on $X \times X$:
 - Metropolis-within-Gibbs,
 - Carlin & Chib,

...

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Sampling path

• Online EM (LS-1)

• MC Online EM + Carlin & Chib (LS-2)

F. Maire (UCD)

oEM (LS-1) vs MCoEM + Carlin & Chib (LS-2)

- L = 500 transitions of the Markov chains (incl. 100 burning iterations)
- Laplace approximations for the pseudo-prior (Carlin & Chib sampler)

MC Online EM + Gibbs (LS-2)

- \implies Any theoretical justification of the MCoEM convergence?
- \implies MC online EM: a *noisy* Online EM...
- ⇒ Does the noise added by the MCoEM to the Online EM sequence affect its convergence?

A general framework to prove convergence of Stochastic EM methods...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Revisiting EM methods

-1- Define the distribution of the complete data viewed by the algorithm

$$\pi_{\theta}(X, Y) = p_{\theta}(X \mid Y)\pi(Y)$$

-2- Define

$$ar{s}_{\pi}(heta) = \mathbb{E}_{\pi_{ heta}}\left[S(X,Y)
ight] = \int_{Y} \mathbb{E}_{ heta}\left[S(X,Y) \mid Y=y
ight] \pi(\mathrm{d}y)$$

-3- Any EM iteration (batch or online) is the deterministic mapping

$$heta_{i+1} = ar{ heta} \circ ar{s}_{\pi}(heta_i) \qquad \left(ext{or equivalently} \quad s_{i+1} = ar{s}_{\pi} \circ ar{ heta}(s_i)
ight)$$

-4- EM methods search for the roots of the function

$$\begin{cases} \bar{h}: \mathsf{S} \to \mathsf{S} \\ \bar{h} = \bar{s}_{\pi} \circ \bar{\theta} - \mathsf{Id} \end{cases}$$

イロト 不得 トイヨト イヨト

Indeed...

• In batch setting *i.e* (Y_1, \ldots, Y_n)

$$\pi(y) = \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{\{y_k\}}(y)$$

and

$$\bar{s}_{\pi}(\theta) = \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}_{\theta} \left[S(X_k, Y_k) \mid Y_k \right] \qquad \blacktriangleleft$$

 \Rightarrow Original EM (Dempster et al., 1977)

In sequential setting

$$\pi(y) = \mathbb{P}^*(\mathrm{d} y)$$

$$ar{s}_{\pi}(heta) = \int_{\mathsf{Y}} \mathbb{E}_{ heta} \left[\left. S(X, \mathbf{Y}) \, \right| \, \mathbf{Y} = y \,
ight] \mathbb{P}^{\star}(\mathrm{d}y)$$

 \Rightarrow The *exact* Online EM does not exist!!

F. Maire (UCD)

э

イロト イポト イヨト イヨト

Stochastic Approximations

• Allow finding the roots of a function $h: S \rightarrow S$ s.t.

- (i) h analytical expression is unknown
- (ii) noisy observations of h are available for any data points

$$\hat{h}(s) = h(s) + \zeta$$

• The method: recursively compute the stochastic sequence $\{\hat{s}_n, n \in \mathbb{N}\}$

$$\hat{s}_n = \hat{s}_{n-1} + \rho_n \hat{h}(\hat{s}_{n-1})$$

 $\{\rho_n, n \in \mathbb{N}\}$ is a decreasing sequence of positive stepsize

- Convergence of $\{\hat{s}_n, n \in \mathbb{N}\}$ to the set of roots (Andrieu et al., 2005) H-1 Mild conditions on $\{\rho_n, n \in \mathbb{N}\}$
 - H-2 Existence of a Lyapounov function for h
 - H-3 Condition on the noise process $\{\zeta_n, n \in \mathbb{N}\}$

$$\lim \sup_{k \to \infty} \sup_{\ell > k} \left| \sum_{n=k}^{\ell} \rho_n \zeta_n \right| = 0$$

Link with Stochastic EM...

All the Stochastic EM features different noisy observations of s
 ^π
 ^π

 SAEM

$$\hat{s}_{\pi} \circ \bar{\theta}(s) = \frac{1}{nL} \sum_{k=1}^{n} \sum_{\ell=1}^{L} S(X_{k}^{(\ell)}, Y_{k}) \approx \frac{1}{n} \underbrace{\sum_{k=1}^{n} \mathbb{E}_{\hat{\theta}_{i-1}}[S(X_{k}, Y_{k}) \mid Y_{k}]}_{\mathbb{E}_{n}\left[\mathbb{E}_{\hat{\theta}_{i-1}}[S(X_{k}, Y_{k}) \mid Y_{k}]\right]} = \bar{s}_{\pi} \circ \bar{\theta}(s)$$

• Online EM

$$\hat{s}_{\pi} \circ \bar{\theta}(s) = \mathbb{E}_{\bar{\theta}(s)} \left[S(X_t, Y_t) \mid Y_t = y \right] \approx \underbrace{\int_{Y} \mathbb{E}_{\theta} \left[S(X, Y) \mid Y = y \right] \pi(\mathrm{d}y)}_{\mathbb{E}^* \left[\mathbb{E}_{\theta} \left[S(X, Y) \mid Y = y \right] \right]}$$

Actually both of these algorithms approximate either

- the expectation against the missing data measure
- the expectation against the observed data measure

・ロト ・四ト ・ヨト ・ヨト

What about the MCoEM?

- Both expectations are actually intractable...
- The approximation is twofold

$$\tilde{s}_{\pi} \circ \bar{\theta}(s) = \frac{1}{L} \sum_{\ell=1}^{L} \left[S(X_t^{(\ell)}, Y_t) \mid Y_t = y \right] \approx \underbrace{\int_{Y} \mathbb{E}_{\theta} \left[S(X, Y) \mid Y = y \right] \pi(\mathrm{d}y)}_{\mathbb{E}^* \left[\mathbb{E}_{\theta} \left[S(X, Y) \mid Y = y \right] \right]}$$

- A doubly Stochastic approximation method?
- Convergence in the *i.i.d.* case follows the footstep of the proof of the Online EM
 - \Rightarrow Only the noise boundedness proof H-3 is different
- No proof at the moment when there is a markovian dependance between the simulated missing data...

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outlines

1 Introduction: EM & Stochastic EM

2 Monte Carlo Online EM: a "practical" Sequential Stochastic EM

3 Inference of Functional Data

э

<ロト <問ト < 目と < 目と

Functional Data Analysis with Deformable Template Model

• Data are discretized functions $\{\mathscr{Y}_n : \mathbb{R}^2 \to \mathbb{R}, n \in \mathbb{N}\}$ t.q. :

 $\{\mathscr{Y}_n, n \in \mathbb{N}\} \xrightarrow{\text{discretization}} \{Y_n, n \in \mathbb{N}\}$

• $\forall n \in \mathbb{N}, \mathscr{Y}_n$ originates from the **deterministic** function (**template**)

$$\mathscr{T}:\mathbb{R}^2\to\mathbb{R}$$

- and are observed through:
 - (i) a random plan deformation $D_n : \mathbb{R}^2 \to \mathbb{R}^2$,
 - (ii) an additive noise process $\mathscr{W}_n : \mathbb{R}^2 \to \mathbb{R}$

$$\forall u \in \mathbb{R}^2$$
, $\mathscr{Y}_n(u) = \mathscr{T} \circ D_n(u) + \mathscr{W}_n(u)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

• Existence of **several** templates $\{\mathscr{T}^{(i)}, i \in I\}$

given
$$I_n = i$$
, $\mathscr{Y}_n = \mathscr{T}^{(i)} \circ D_n^{(i)} + \mathscr{W}_n^{(i)}$.

Illustration for a 5-class mixture model:

- 4 回 ト 4 ヨ ト 4 ヨ ト

• Existence of **several** templates $\{\mathscr{T}^{(i)}, i \in I\}$

given
$$I_n = i$$
, $\mathscr{Y}_n = \mathscr{T}^{(i)} \circ D_n^{(i)} + \mathscr{W}_n^{(i)}$.

Illustration for a 5-class mixture model:

1

5 templates

・ 何 ト ・ ヨ ト ・ ヨ ト

• Existence of **several** templates $\{\mathscr{T}^{(i)}, i \in I\}$

given
$$I_n = i$$
, $\mathscr{Y}_n = \mathscr{T}^{(i)} \circ D_n^{(i)} + \mathscr{W}_n^{(i)}$.

Illustration for a 5-class mixture model:

1

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

1

• Existence of **several** templates $\{\mathscr{T}^{(i)}, i \in I\}$

given
$$I_n = i$$
, $\mathscr{Y}_n = \mathscr{T}^{(i)} \circ D_n^{(i)} + \mathscr{W}_n^{(i)}$.

Illustration for a 5-class mixture model:

• • = • • = •

1

• Existence of **several** templates $\{\mathscr{T}^{(i)}, i \in I\}$

given
$$I_n = i$$
, $\mathscr{Y}_n = \mathscr{T}^{(i)} \circ D_n^{(i)} + \mathscr{W}_n^{(i)}$.

Illustration for a 5-class mixture model:

• • = • • = •

• Existence of **several** templates $\{\mathscr{T}^{(i)}, i \in I\}$

given
$$I_n = i$$
, $\mathscr{Y}_n = \mathscr{T}^{(i)} \circ D_n^{(i)} + \mathscr{W}_n^{(i)}$.

Illustration for a 5-class mixture model:

< □ > < 同 > < 回 > < 回 > < 回 >

• Existence of **several** templates $\{\mathscr{T}^{(i)}, i \in I\}$

given
$$I_n = i$$
, $\mathscr{Y}_n = \mathscr{T}^{(i)} \circ D_n^{(i)} + \mathscr{W}_n^{(i)}$.

• Existence of **several** templates $\{\mathscr{T}^{(i)}, i \in I\}$

given
$$I_n = i$$
, $\mathscr{Y}_n = \mathscr{T}^{(i)} \circ D_n^{(i)} + \mathscr{W}_n^{(i)}$.

• Existence of **several** templates $\{\mathscr{T}^{(i)}, i \in I\}$

given
$$I_n = i$$
, $\mathscr{Y}_n = \mathscr{T}^{(i)} \circ D_n^{(i)} + \mathscr{W}_n^{(i)}$.

Illustration for a 5-class mixture model:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

• Existence of **several** templates $\{\mathscr{T}^{(i)}, i \in I\}$

given
$$I_n = i$$
, $\mathscr{Y}_n = \mathscr{T}^{(i)} \circ D_n^{(i)} + \mathscr{W}_n^{(i)}$.

• Existence of **several** templates $\{\mathscr{T}^{(i)}, i \in I\}$

given
$$I_n = i$$
, $\mathscr{Y}_n = \mathscr{T}^{(i)} \circ D_n^{(i)} + \mathscr{W}_n^{(i)}$.

• Existence of **several** templates $\{\mathscr{T}^{(i)}, i \in I\}$

given
$$I_n = i$$
, $\mathscr{Y}_n = \mathscr{T}^{(i)} \circ D_n^{(i)} + \mathscr{W}_n^{(i)}$.

Template estimation

Under parametrization, the model may be rewritten as:

Given,
$$I_n = i$$
 $Y_n = \Phi_{\beta_n} \alpha_i + \sigma W_n$, $\begin{cases} W_n \sim \mathcal{N}_{|\mathbf{Y}|}(0, |\mathbf{d}_{|\mathbf{Y}|}) \\ \beta_n | I_n = i \sim \mathcal{N}_{|\mathbf{X}|}(0, \Gamma_i) \end{cases}$

- $\beta \rightarrow \Phi_{\beta}$ is a non-linear mapping without any Gaussian approximation...
- Neither the Original EM nor the Online EM allow parameter estimation
- SAEM or MCoEM are possible solutions...

< ロ > < 同 > < 回 > < 回 > < 回 > <

Computational (un)efficiency

- Recall that at each iteration the SAEM needs to estimate n cnd. expectations:
 - ⇒ Simulate *n* Markov chains $\{(\beta_n^{(\ell)}, I_n^{(\ell)}), \ell \in \mathbb{N}\}$ targeting $p_{\theta}(\cdot | Y_n)$ ⇒ dim $\beta \approx 100$ is prohibitive...
- Instead MC Online EM needs only one Markov chain per iteration...
- Simulations!

・ロト ・四ト・ モン・ モン

MCoEM has some drawbacks as well...

- Unrobustness to outliers
 - \Rightarrow Especially in mixture models...(degenerescence)
 - \Rightarrow A pre-processing step?
- Requires an *efficient* MCMC method
 - \Rightarrow Such that Carlin & Chib (inducing extra computing cost...)
- SAEM less affected by these drawbacks
 - \Rightarrow The batch set of data allows to balance mis-estimations...

- 4 目 ト - 4 日 ト

Works in progress...

- Convergence proof of the MCoEM coupled with a MCMC...
 (i) Metropolis-Hastings sampler
 - (ii) More sophisticated kernels (s.t. Carlin & Chib)
- Possible extension to state-space models...

< □ > < 同 > < 回 > < 回 > < 回 >