Light and Widely Applicable MCMC:
 Bayesian inference for large datasets

Florian Maire with Nial Friel \& Pierre Alquier

Outline

Topics of interest / Keywords

\Rightarrow Bayesian inference for large datasets
\Rightarrow What is a posterior distribution?
\Rightarrow Markov chain Monte Carlo methods (MCMC)
\Rightarrow Our method: Light and Widely Applicable MCMC
\Rightarrow Applications: Shape recognition, Regression ...

Modeling the data

Let $Y_{1}, Y_{2}, \ldots, Y_{N}$ be N data (\equiv observations)

Modeling the data

Let $Y_{1}, Y_{2}, \ldots, Y_{N}$ be N data (\equiv observations)

- Y_{i} can represent any type of information:
- a measurement of a physical experimentation,
- a sensor response,
- a survey,
- a graph, an image...

Modeling the data

Let $Y_{1}, Y_{2}, \ldots, Y_{N}$ be N data (\equiv observations)

- Y_{i} can represent any type of information:
- a measurement of a physical experimentation,
- a sensor response,
- a survey,
- a graph, an image...
- Y_{i} can be a real number/vector/matrix

Modeling the data

Let $Y_{1}, Y_{2}, \ldots, Y_{N}$ be N data (\equiv observations)

- Y_{i} can represent any type of information:
- a measurement of a physical experimentation,
- a sensor response,
- a survey,
- a graph, an image...
- Y_{i} can be a real number/vector/matrix

Interest: modeling Y_{i} is finding a probability distribution f such that
the distribution of Y_{1}, Y_{2}, \ldots is roughly f

Height survey example

We asked to a group of $N=1,000$ people their height

- Y_{i} is the i-th participant height...
- Y_{i} is a (positive!) real number (measure in cm)

Height survey example

Why modeling is important?

Here the model has been estimated with:

$$
f(y)=\underbrace{.65}_{\text {prop. } 1} \times \mathcal{N}(\underbrace{163}_{\text {mean } 1}, \underbrace{4}_{\text {var } 1}, y)+.35 \times \mathcal{N}(172,4.6, y) .
$$

Why modeling is important?

Here the model has been estimated with:

$$
f(y)=\underbrace{.65}_{\text {prop. } 1} \times \mathcal{N}(\underbrace{163}_{\text {mean } 1}, \underbrace{4}_{\text {var } 1}, y)+.35 \times \mathcal{N}(172,4.6, y) .
$$

Modeling Y_{i} will allow to:

- understand the uncertainty related to the phenomenon of interest
- predict new data Y_{N+1}, Y_{N+2}, \ldots
- simulate new data
- cluster the existing data
- estimate missing/latent data, etc.

Why modeling is important?

Here the model has been estimated with:

$$
f(y)=\underbrace{.65}_{\text {prop. } 1} \times \mathcal{N}(\underbrace{163}_{\text {mean } 1}, \underbrace{4}_{\text {var } 1}, y)+.35 \times \mathcal{N}(172,4.6, y) .
$$

Modeling Y_{i} will allow to:

- understand the uncertainty related to the phenomenon of interest
- predict new data Y_{N+1}, Y_{N+2}, \ldots
- simulate new data
- cluster the existing data
- estimate missing/latent data, etc.

"All models are wrong, some are usefull", G. Box

Likelihood function

Most of the time, f is assumed to belong to a parametric distribution

$$
Y_{i} \sim f \equiv f(\cdot \mid \theta), \quad \theta \in \Theta
$$

■ θ is called the parameter of the model (mean, variance, correlations...)

- θ can be a real number/vector/matrix

■ Θ is the set of all possible parameters
The function $y \rightarrow f(y \mid \theta)$ is called the likelihood function

Likelihood function

Most of the time, f is assumed to belong to a parametric distribution

$$
Y_{i} \sim f \equiv f(\cdot \mid \theta), \quad \theta \in \Theta
$$

- θ is called the parameter of the model (mean, variance, correlations...)
- θ can be a real number/vector/matrix

■ Θ is the set of all possible parameters
The function $y \rightarrow f(y \mid \theta)$ is called the likelihood function

The Question: how to estimate a "good" θ, say θ^{*}, such that

$$
f\left(\cdot \mid \theta^{*}\right) \text { is a "good" model ?? }
$$

Height survey example

The Bayesian approach

In Bayesian statistics, θ is regarded as a random variable

We are not looking for an unique good θ^{*} but for a good range of those!

The Bayesian approach

In Bayesian statistics, θ is regarded as a random variable

We are not looking for an unique good θ^{*} but for a good range of those!

An initial guess on θ is conveyed through its prior distribution p \Rightarrow so, in absence of data, the distribution of θ is simply

$$
\operatorname{Pr}(\theta)=p(\theta)
$$

The Bayesian approach

In Bayesian statistics, θ is regarded as a random variable

We are not looking for an unique good θ^{*} but for a good range of those!

An initial guess on θ is conveyed through its prior distribution p \Rightarrow so, in absence of data, the distribution of θ is simply

$$
\operatorname{Pr}(\theta)=p(\theta)
$$

Now, as soon as some data are observed, the distribution of θ is updated:

$$
\operatorname{Pr}\left(\theta \mid Y_{1}, \ldots, Y_{N}\right) \propto f\left(Y_{1}, \ldots, Y_{N} \mid \theta\right) p(\theta)
$$

$\Rightarrow \operatorname{Pr}\left(\cdot \mid Y_{1}, \ldots, Y_{N}\right)$ is called the posterior distribution of θ given Y_{1}, \ldots, Y_{N}.

The Bayesian question

Remember, our objective is to derive the location of the good $\theta \mathrm{s}$ to model Y_{1}, \ldots, Y_{N}.

The Bayesian question

Remember, our objective is to derive the location of the good $\theta \mathrm{s}$ to model Y_{1}, \ldots, Y_{N}.

In the Bayesian approach, we want to have a good knowledge of the posterior distribution

The Bayesian question

Remember, our objective is to derive the location of the good $\theta \mathrm{s}$ to model Y_{1}, \ldots, Y_{N}.

In the Bayesian approach, we want to have a good knowledge of the posterior distribution

The Bayesian question: Having observed Y_{1}, \ldots, Y_{N}, what is the probability that θ belongs to an interval/region \mathcal{I} ?

$$
\Rightarrow \operatorname{Pr}\left(\theta \in \mathcal{I} \mid Y_{1}, \ldots, Y_{N}\right)=\frac{\int_{\mathcal{I}} f\left(Y_{1}, \ldots, Y_{N} \mid \theta\right) p(\mathrm{~d} \theta)}{\int_{\Theta} f\left(Y_{1}, \ldots, Y_{N} \mid \theta\right) p(\mathrm{~d} \theta)}
$$

The Bayesian question

Remember, our objective is to derive the location of the good $\theta \mathrm{s}$ to model Y_{1}, \ldots, Y_{N}.

In the Bayesian approach, we want to have a good knowledge of the posterior distribution

The Bayesian question: Having observed Y_{1}, \ldots, Y_{N}, what is the probability that θ belongs to an interval/region \mathcal{I} ?

$$
\Rightarrow \operatorname{Pr}\left(\theta \in \mathcal{I} \mid Y_{1}, \ldots, Y_{N}\right)=\frac{\int_{\mathcal{I}} f\left(Y_{1}, \ldots, Y_{N} \mid \theta\right) p(\mathrm{~d} \theta)}{\int_{\Theta} f\left(Y_{1}, \ldots, Y_{N} \mid \theta\right) p(\mathrm{~d} \theta)}
$$

Main issue: for realistic models, there is no hope to get this!

A computational solution

It is possible to approximate the quantity $\operatorname{Pr}\left(\theta \in \mathcal{I} \mid Y_{1}, \ldots, Y_{N}\right)$ with an arbitrary precision

Provided that we can simulate samples from the posterior

$$
\theta_{1}, \theta_{2}, \ldots \sim \operatorname{Pr}\left(\cdot \mid Y_{1}, \ldots, Y_{N}\right)
$$

\Rightarrow Example!

Example

Assume the following posterior distribution $\operatorname{Pr}\left(\theta \mid Y_{1}, \ldots, Y_{N}\right)$ is unknown

\Rightarrow in this case, we know it exactly: $\operatorname{Pr}\left(\theta \in(2,4) \mid Y_{1}, \ldots, Y_{N}\right)=.24$
(Surprisingly!) even if $\operatorname{Pr}\left(\theta \mid Y_{1}, \ldots, Y_{n}\right)$ is unknown, it may be possible to get samples $\theta_{1}, \theta_{2}, \ldots$ from it

Example: 10 samples from $\operatorname{Pr}\left(\theta \mid Y_{1}, \ldots, Y_{N}\right)$

Figure: $\widehat{\operatorname{Pr}}\left(\theta \in(2,4) \mid Y_{1}, \ldots, Y_{N}\right)=.1($ true $=.24)$

Example: 100 samples from $\operatorname{Pr}\left(\theta \mid Y_{1}, \ldots, Y_{N}\right)$

Figure: $\widehat{\operatorname{Pr}}\left(\theta \in(2,4) \mid Y_{1}, \ldots, Y_{N}\right)=.17$ (true $\left.=.24\right)$

Example: 1000 samples from $\operatorname{Pr}\left(\theta \mid Y_{1}, \ldots, Y_{N}\right)$

Figure: $\widehat{\operatorname{Pr}}\left(\theta \in(2,4) \mid Y_{1}, \ldots, Y_{N}\right)=.25$ (true $\left.=.24\right)$

Example: 10^{5} samples from $\operatorname{Pr}\left(\theta \mid Y_{1}, \ldots, Y_{N}\right)$

Figure: $\widehat{\operatorname{Pr}}\left(\theta \in(2,4) \mid Y_{1}, \ldots, Y_{N}\right)=.2408$ (true= $=24$)

Bridge to our actual problem

In a sense: the initial modeling problem reduces to a simulation problem

Bridge to our actual problem

In a sense: the initial modeling problem reduces to a simulation problem

Question: How do simulation methods cope when the number of data increases, i.e $N \rightarrow \infty$?
\Rightarrow actually very badly!

We understand that $\operatorname{Pr}\left(\theta \mid Y_{1}, \ldots, Y_{100}\right)$ might be less complicated that $\operatorname{Pr}\left(\theta \mid Y_{1}, \ldots, Y_{10^{6}}\right)$

Outline

Topics of interest / Keywords

\Rightarrow Bayesian inference
\Rightarrow Posterior distribution
\Rightarrow Markov chain Monte Carlo methods
\Rightarrow our method: Light and Widely Applicable MCMC
\Rightarrow Applications: Regression, Classification, Shape recognition...

Simulation of a posterior distribution

The most popular method to get samples from $\theta \sim \operatorname{Pr}\left(\cdot \mid Y_{1}, \ldots, Y_{N}\right)$ is called Metropolis-Hastings (M-H) (1956)

Simulation of a posterior distribution

The most popular method to get samples from $\theta \sim \operatorname{Pr}\left(\cdot \mid Y_{1}, \ldots, Y_{N}\right)$ is called Metropolis-Hastings (M-H) (1956)
\Rightarrow implementable as long as $\theta \rightarrow f\left(Y_{1}, \ldots, Y_{N} \mid \theta\right) p(\theta)$ is available

Simulation of a posterior distribution

The most popular method to get samples from $\theta \sim \operatorname{Pr}\left(\cdot \mid Y_{1}, \ldots, Y_{N}\right)$ is called Metropolis-Hastings (M-H) (1956)
\Rightarrow implementable as long as $\theta \rightarrow f\left(Y_{1}, \ldots, Y_{N} \mid \theta\right) p(\theta)$ is available
\Rightarrow theoretically justified

Simulation of a posterior distribution

The most popular method to get samples from $\theta \sim \operatorname{Pr}\left(\cdot \mid Y_{1}, \ldots, Y_{N}\right)$ is called Metropolis-Hastings (M-H) (1956)
\Rightarrow implementable as long as $\theta \rightarrow f\left(Y_{1}, \ldots, Y_{N} \mid \theta\right) p(\theta)$ is available
\Rightarrow theoretically justified
$\Rightarrow 50,000+$ citations for the two main papers of the method (G Scholar)

Simulation of a posterior distribution

The most popular method to get samples from $\theta \sim \operatorname{Pr}\left(\cdot \mid Y_{1}, \ldots, Y_{N}\right)$ is called Metropolis-Hastings (M-H) (1956)
\Rightarrow implementable as long as $\theta \rightarrow f\left(Y_{1}, \ldots, Y_{N} \mid \theta\right) p(\theta)$ is available
\Rightarrow theoretically justified
$\Rightarrow 50,000+$ citations for the two main papers of the method (G Scholar)
$\mathrm{M}-\mathrm{H}$ is a particular instance of a general class of simulation methods called Markov chain Monte Carlo algorithms (MCMC)

Metropolis-Hastings algorithm

$\mathrm{M}-\mathrm{H}$ simulates a non-independent sequence of parameters starting with a random $\theta_{0} \in \Theta$

$$
\theta_{0} \rightarrow \theta_{1} \rightarrow \theta_{2} \rightarrow \ldots \rightarrow \theta_{k}
$$

with the following two steps:

Metropolis-Hastings algorithm

$\mathrm{M}-\mathrm{H}$ simulates a non-independent sequence of parameters starting with a random $\theta_{0} \in \Theta$

$$
\theta_{0} \rightarrow \theta_{1} \rightarrow \theta_{2} \rightarrow \ldots \rightarrow \theta_{k}
$$

with the following two steps:
(i) from θ_{k}, propose a candidate $\tilde{\theta} \sim Q\left(\theta_{k}, \cdot\right)$

Metropolis-Hastings algorithm

$\mathrm{M}-\mathrm{H}$ simulates a non-independent sequence of parameters starting with a random $\theta_{0} \in \Theta$

$$
\theta_{0} \rightarrow \theta_{1} \rightarrow \theta_{2} \rightarrow \ldots \rightarrow \theta_{k}
$$

with the following two steps:
(i) from θ_{k}, propose a candidate $\tilde{\theta} \sim Q\left(\theta_{k}, \cdot\right)$
(ii) set $\theta_{k+1}=\tilde{\theta}$ with proba.:

$$
\alpha\left(\theta_{k}, \tilde{\theta}\right)=\min \left\{1, \frac{f\left(Y_{1}, \ldots, Y_{N} \mid \tilde{\theta}\right) p(\tilde{\theta}) Q\left(\tilde{\theta}, \theta_{k}\right)}{f\left(Y_{1}, \ldots, Y_{N} \mid \theta_{k}\right) p\left(\theta_{k}\right) Q\left(\theta_{k}, \tilde{\theta}\right)}\right\}
$$

and $\theta_{k+1}=\theta_{k}$ otherwise.

Metropolis-Hastings algorithm

$\mathrm{M}-\mathrm{H}$ simulates a non-independent sequence of parameters starting with a random $\theta_{0} \in \Theta$

$$
\theta_{0} \rightarrow \theta_{1} \rightarrow \theta_{2} \rightarrow \ldots \rightarrow \theta_{k}
$$

with the following two steps:
(i) from θ_{k}, propose a candidate $\tilde{\theta} \sim Q\left(\theta_{k}, \cdot\right)$
(ii) set $\theta_{k+1}=\tilde{\theta}$ with proba.:

$$
\alpha\left(\theta_{k}, \tilde{\theta}\right)=\min \left\{1, \frac{f\left(Y_{1}, \ldots, Y_{N} \mid \tilde{\theta}\right) p(\tilde{\theta}) Q\left(\tilde{\theta}, \theta_{k}\right)}{f\left(Y_{1}, \ldots, Y_{N} \mid \theta_{k}\right) p\left(\theta_{k}\right) Q\left(\theta_{k}, \tilde{\theta}\right)}\right\}
$$

and $\theta_{k+1}=\theta_{k}$ otherwise.

Critical issue: If N is very large, computing $f\left(Y_{1}, \ldots, Y_{N} \mid \tilde{\theta}\right)$ at each iteration is prohibitively expensive

Shifting the question

Remember, we want to estimate for any interval \mathcal{I}

$$
\operatorname{Pr}\left(\theta \in \mathcal{I} \mid Y_{1}, \ldots, Y_{N}\right) \approx \frac{1}{L} \sum_{\ell=1}^{L} \#\left\{\theta_{\ell} \in \mathcal{I}\right\}
$$

Shifting the question

Remember, we want to estimate for any interval \mathcal{I}

$$
\operatorname{Pr}\left(\theta \in \mathcal{I} \mid Y_{1}, \ldots, Y_{N}\right) \approx \frac{1}{L} \sum_{\ell=1}^{L} \#\left\{\theta_{\ell} \in \mathcal{I}\right\}
$$

Classical: How big L should be to reach a given precision?

Shifting the question

Remember, we want to estimate for any interval \mathcal{I}

$$
\operatorname{Pr}\left(\theta \in \mathcal{I} \mid Y_{1}, \ldots, Y_{N}\right) \approx \frac{1}{L} \sum_{\ell=1}^{L} \#\left\{\theta_{\ell} \in \mathcal{I}\right\}
$$

Classical: How big L should be to reach a given precision?

 pb : this does not consider the simulation burden generated by each sample
Shifting the question

Remember, we want to estimate for any interval \mathcal{I}

$$
\operatorname{Pr}\left(\theta \in \mathcal{I} \mid Y_{1}, \ldots, Y_{N}\right) \approx \frac{1}{L} \sum_{\ell=1}^{L} \#\left\{\theta_{\ell} \in \mathcal{I}\right\}
$$

Classical: How big L should be to reach a given precision?

pb : this does not consider the simulation burden generated by each sample

Topical: For a given CPU budget, how can we derive a tradeoff between precision and feasibility?

Scaling up Metropolis-Hastings

From 2010 onwards, bypassing this severe limitation in the hot topic (tens of those papers in the best stat journals)

Scaling up Metropolis-Hastings

From 2010 onwards, bypassing this severe limitation in the hot topic (tens of those papers in the best stat journals)

Most of the proposed strategies consist in:
(Sol-1) using an unbiased estimate of the likelihood $f\left(Y_{1}, \ldots, Y_{N} \mid \tilde{\theta}\right)$

Scaling up Metropolis-Hastings

From 2010 onwards, bypassing this severe limitation in the hot topic (tens of those papers in the best stat journals)

Most of the proposed strategies consist in:
(Sol-1) using an unbiased estimate of the likelihood $f\left(Y_{1}, \ldots, Y_{N} \mid \tilde{\theta}\right)$ $\Rightarrow \mathrm{pb}$ specific + estimate might be as costly as likelihood eval.

Scaling up Metropolis-Hastings

From 2010 onwards, bypassing this severe limitation in the hot topic (tens of those papers in the best stat journals)

Most of the proposed strategies consist in:
(Sol-1) using an unbiased estimate of the likelihood $f\left(Y_{1}, \ldots, Y_{N} \mid \tilde{\theta}\right)$ $\Rightarrow \mathrm{pb}$ specific + estimate might be as costly as likelihood eval.
(Sol-2) taking with a prescribed probability the same decision as the original $\mathrm{M}-\mathrm{H}$ but using a subset of the data

Scaling up Metropolis-Hastings

From 2010 onwards, bypassing this severe limitation in the hot topic (tens of those papers in the best stat journals)

Most of the proposed strategies consist in:
(Sol-1) using an unbiased estimate of the likelihood $f\left(Y_{1}, \ldots, Y_{N} \mid \tilde{\theta}\right)$ $\Rightarrow \mathrm{pb}$ specific + estimate might be as costly as likelihood eval.
(Sol-2) taking with a prescribed probability the same decision as the original $\mathrm{M}-\mathrm{H}$ but using a subset of the data
\Rightarrow assumptions hold for f

Scaling up Metropolis-Hastings

From 2010 onwards, bypassing this severe limitation in the hot topic (tens of those papers in the best stat journals)

Most of the proposed strategies consist in:
(Sol-1) using an unbiased estimate of the likelihood $f\left(Y_{1}, \ldots, Y_{N} \mid \tilde{\theta}\right)$ $\Rightarrow \mathrm{pb}$ specific + estimate might be as costly as likelihood eval.
(Sol-2) taking with a prescribed probability the same decision as the original $\mathrm{M}-\mathrm{H}$ but using a subset of the data
\Rightarrow assumptions hold for f
\Rightarrow in practice, a large portion of the data are used (75-90\%)

Scaling up Metropolis-Hastings

From 2010 onwards, bypassing this severe limitation in the hot topic (tens of those papers in the best stat journals)

Most of the proposed strategies consist in:
(Sol-1) using an unbiased estimate of the likelihood $f\left(Y_{1}, \ldots, Y_{N} \mid \tilde{\theta}\right)$
$\Rightarrow \mathrm{pb}$ specific + estimate might be as costly as likelihood eval.
(Sol-2) taking with a prescribed probability the same decision as the original $\mathrm{M}-\mathrm{H}$ but using a subset of the data
\Rightarrow assumptions hold for f
\Rightarrow in practice, a large portion of the data are used (75-90\%)
Our work aimed at finding a method:

Scaling up Metropolis-Hastings

From 2010 onwards, bypassing this severe limitation in the hot topic (tens of those papers in the best stat journals)

Most of the proposed strategies consist in:
(Sol-1) using an unbiased estimate of the likelihood $f\left(Y_{1}, \ldots, Y_{N} \mid \tilde{\theta}\right)$
$\Rightarrow \mathrm{pb}$ specific + estimate might be as costly as likelihood eval.
(Sol-2) taking with a prescribed probability the same decision as the original $\mathrm{M}-\mathrm{H}$ but using a subset of the data
\Rightarrow assumptions hold for f
\Rightarrow in practice, a large portion of the data are used (75-90\%)
Our work aimed at finding a method:

- Widely applicable (universal, like M-H)

Scaling up Metropolis-Hastings

From 2010 onwards, bypassing this severe limitation in the hot topic (tens of those papers in the best stat journals)

Most of the proposed strategies consist in:
(Sol-1) using an unbiased estimate of the likelihood $f\left(Y_{1}, \ldots, Y_{N} \mid \tilde{\theta}\right)$
$\Rightarrow \mathrm{pb}$ specific + estimate might be as costly as likelihood eval.
(Sol-2) taking with a prescribed probability the same decision as the original $\mathrm{M}-\mathrm{H}$ but using a subset of the data
\Rightarrow assumptions hold for f
\Rightarrow in practice, a large portion of the data are used (75-90\%)
Our work aimed at finding a method:

- Widely applicable (universal, like M-H)
- Light (with a controlled CPU cost)

Scaling up Metropolis-Hastings

From 2010 onwards, bypassing this severe limitation in the hot topic (tens of those papers in the best stat journals)

Most of the proposed strategies consist in:
(Sol-1) using an unbiased estimate of the likelihood $f\left(Y_{1}, \ldots, Y_{N} \mid \tilde{\theta}\right)$
$\Rightarrow \mathrm{pb}$ specific + estimate might be as costly as likelihood eval.
(Sol-2) taking with a prescribed probability the same decision as the original $\mathrm{M}-\mathrm{H}$ but using a subset of the data
\Rightarrow assumptions hold for f
\Rightarrow in practice, a large portion of the data are used (75-90\%)
Our work aimed at finding a method:

- Widely applicable (universal, like M-H)
- Light (with a controlled CPU cost)
- Simple (Black-box/few parameters)

Light and Widely Applicable (LWA) MCMC: motivation

Consider an exponential model i.e a likelihood function of the type:

$$
f(y \mid \theta)=\exp \left\{h(\theta)^{\top} S(y)\right\} / Z(\theta), \quad Z(\theta)=\int \exp \left\{h(\theta)^{\top} S(y)\right\} \mathrm{d} y
$$

Light and Widely Applicable (LWA) MCMC: motivation

Consider an exponential model i.e a likelihood function of the type:

$$
f(y \mid \theta)=\exp \left\{h(\theta)^{\top} S(y)\right\} / Z(\theta), \quad Z(\theta)=\int \exp \left\{h(\theta)^{\top} S(y)\right\} \mathrm{d} y
$$

For the likelihood of a set of independent data, we have:

$$
f\left(Y_{1}, \ldots, Y_{N} \mid \theta\right)^{1 / N}=\exp \left\{h(\theta)^{\top} \frac{1}{N} \sum_{\ell=1}^{N} S\left(Y_{\ell}\right)\right\} / Z(\theta)
$$

Light and Widely Applicable (LWA) MCMC: motivation

Consider an exponential model i.e a likelihood function of the type:

$$
f(y \mid \theta)=\exp \left\{h(\theta)^{\top} S(y)\right\} / Z(\theta), \quad Z(\theta)=\int \exp \left\{h(\theta)^{\top} S(y)\right\} \mathrm{d} y
$$

For the likelihood of a set of independent data, we have:

$$
f\left(Y_{1}, \ldots, Y_{N} \mid \theta\right)^{1 / N}=\exp \left\{h(\theta)^{\top} \frac{1}{N} \sum_{\ell=1}^{N} S\left(Y_{\ell}\right)\right\} / Z(\theta)
$$

Now consider a subset of those data $\left\{Y_{\ell}, \ell \in U\right\}$ of size n

$$
f\left(Y_{\ell}, \ell \in U \mid \theta\right)^{1 / n}=\exp \left\{h(\theta)^{\top} \frac{1}{n} \sum_{\ell \in U} S\left(Y_{\ell}\right)\right\} / Z(\theta)
$$

Light and Widely Applicable (LWA) MCMC: motivation

Consider an exponential model i.e a likelihood function of the type:

$$
f(y \mid \theta)=\exp \left\{h(\theta)^{\top} S(y)\right\} / Z(\theta), \quad Z(\theta)=\int \exp \left\{h(\theta)^{\top} S(y)\right\} \mathrm{d} y
$$

For the likelihood of a set of independent data, we have:

$$
f\left(Y_{1}, \ldots, Y_{N} \mid \theta\right)^{1 / N}=\exp \left\{h(\theta)^{\top} \frac{1}{N} \sum_{\ell=1}^{N} S\left(Y_{\ell}\right)\right\} / Z(\theta)
$$

Now consider a subset of those data $\left\{Y_{\ell}, \ell \in U\right\}$ of size n

$$
f\left(Y_{\ell}, \ell \in U \mid \theta\right)^{1 / n}=\exp \left\{h(\theta)^{\top} \frac{1}{n} \sum_{\ell \in U} S\left(Y_{\ell}\right)\right\} / Z(\theta)
$$

Think about the case where: $\frac{1}{n} \sum_{\ell \in U} S\left(Y_{\ell}\right)=\frac{1}{N} \sum_{\ell=1}^{N} S\left(Y_{\ell}\right)$

LWA-MCMC: the intuition

For this (very specific) setup: inference based on N data Y_{1}, \ldots, Y_{N} is the same as using a subset of n data $\left\{Y_{\ell}, \ell \in U\right\}$ provided that

$$
\frac{1}{N} \sum_{\ell=1}^{N} S\left(Y_{\ell}\right)=\frac{1}{n} \sum_{\ell \in U} S\left(Y_{\ell}\right)
$$

LWA-MCMC: the intuition

For this (very specific) setup: inference based on N data Y_{1}, \ldots, Y_{N} is the same as using a subset of n data $\left\{Y_{\ell}, \ell \in U\right\}$ provided that

$$
\frac{1}{N} \sum_{\ell=1}^{N} S\left(Y_{\ell}\right)=\frac{1}{n} \sum_{\ell \in U} S\left(Y_{\ell}\right)
$$

Our intuition: for any type of models, if it exists a subset $\left\{Y_{\ell}, \ell \in U\right\}$ s.t.

$$
\mathcal{L}\left(Y_{1}, \ldots, Y_{N}\right) \approx \mathcal{L}\left(Y_{\ell}, \ell \in U\right)
$$

then

$$
\operatorname{Pr}\left(\cdot \mid Y_{1}, \ldots, Y_{N}\right) \approx \operatorname{Pr}\left(\cdot \mid Y_{\ell}, \ell \in U\right)
$$

LWA-MCMC: critical questions

- How to assess that $\mathcal{L}\left(Y_{1}, \ldots, Y_{N}\right) \approx \mathcal{L}\left(Y_{\ell}, \ell \in U\right)$?

LWA-MCMC: critical questions

- How to assess that $\mathcal{L}\left(Y_{1}, \ldots, Y_{N}\right) \approx \mathcal{L}\left(Y_{\ell}, \ell \in U\right)$?
\Rightarrow we use a set of (pb specific) summary statistics S (moments, quantiles, ...) and assign to each subset U of size n a weight

$$
\omega(U) \propto \exp \left\{-\epsilon\left\|\frac{1}{N} \sum_{\ell=1}^{N} S\left(Y_{\ell}\right)-\frac{1}{n} \sum_{\ell \in U} S\left(Y_{\ell}\right)\right\|^{2}\right\}, \quad \epsilon>0
$$

LWA-MCMC: critical questions

- How to assess that $\mathcal{L}\left(Y_{1}, \ldots, Y_{N}\right) \approx \mathcal{L}\left(Y_{\ell}, \ell \in U\right)$?
\Rightarrow we use a set of (pb specific) summary statistics S (moments, quantiles, ...) and assign to each subset U of size n a weight

$$
\omega(U) \propto \exp \left\{-\epsilon\left\|\frac{1}{N} \sum_{\ell=1}^{N} S\left(Y_{\ell}\right)-\frac{1}{n} \sum_{\ell \in U} S\left(Y_{\ell}\right)\right\|^{2}\right\}, \quad \epsilon>0
$$

- Which subset to choose from? (there are $\binom{N}{n}$ of them)

LWA-MCMC: critical questions

- How to assess that $\mathcal{L}\left(Y_{1}, \ldots, Y_{N}\right) \approx \mathcal{L}\left(Y_{\ell}, \ell \in U\right)$?
\Rightarrow we use a set of (pb specific) summary statistics S (moments, quantiles, ...) and assign to each subset U of size n a weight

$$
\omega(U) \propto \exp \left\{-\epsilon\left\|\frac{1}{N} \sum_{\ell=1}^{N} S\left(Y_{\ell}\right)-\frac{1}{n} \sum_{\ell \in U} S\left(Y_{\ell}\right)\right\|^{2}\right\}, \quad \epsilon>0
$$

- Which subset to choose from? (there are $\binom{N}{n}$ of them)
\Rightarrow we refuse to choose!
\Rightarrow each subset U should be involve in the process according to $\omega(U)$ \Rightarrow the different subsets will act complimentarily

Light and Widely Applicable MCMC: the algorithm

 Starting with a random $\theta_{0} \in \Theta, U_{0} \subseteq\{1, \ldots, N\}$ and $\left|U_{0}\right|=n$$$
\left(\theta_{0}, \mathrm{U}_{0}\right) \rightarrow\left(\theta_{1}, \mathrm{U}_{1}\right) \rightarrow\left(\theta_{2}, \mathrm{U}_{2}\right) \rightarrow \cdots \rightarrow\left(\theta_{k}, \mathrm{U}_{\mathrm{k}}\right)
$$

Light and Widely Applicable MCMC: the algorithm

 Starting with a random $\theta_{0} \in \Theta, U_{0} \subseteq\{1, \ldots, N\}$ and $\left|U_{0}\right|=n$$$
\left(\theta_{0}, \mathrm{U}_{0}\right) \rightarrow\left(\theta_{1}, \mathrm{U}_{1}\right) \rightarrow\left(\theta_{2}, \mathrm{U}_{2}\right) \rightarrow \cdots \rightarrow\left(\theta_{k}, \mathrm{U}_{\mathrm{k}}\right)
$$

step (i) Refreshing the subset U_{k}

Light and Widely Applicable MCMC: the algorithm

Starting with a random $\theta_{0} \in \Theta, U_{0} \subseteq\{1, \ldots, N\}$ and $\left|U_{0}\right|=n$

$$
\left(\theta_{0}, \mathrm{U}_{0}\right) \rightarrow\left(\theta_{1}, \mathrm{U}_{1}\right) \rightarrow\left(\theta_{2}, \mathrm{U}_{2}\right) \rightarrow \cdots \rightarrow\left(\theta_{k}, \mathrm{U}_{\mathrm{k}}\right)
$$

step (i) Refreshing the subset U_{k}

$$
\Rightarrow \text { propose a new subset } \tilde{U} \sim K\left(U_{\mathrm{k}}, \cdot\right)
$$

Light and Widely Applicable MCMC: the algorithm

Starting with a random $\theta_{0} \in \Theta, U_{0} \subseteq\{1, \ldots, N\}$ and $\left|U_{0}\right|=n$

$$
\left(\theta_{0}, \mathrm{U}_{0}\right) \rightarrow\left(\theta_{1}, \mathrm{U}_{1}\right) \rightarrow\left(\theta_{2}, \mathrm{U}_{2}\right) \rightarrow \cdots \rightarrow\left(\theta_{k}, \mathrm{U}_{\mathrm{k}}\right)
$$

step (i) Refreshing the subset U_{k}
\Rightarrow propose a new subset $\tilde{U} \sim K\left(U_{k}, \cdot\right)$
\Rightarrow set $U_{k+1}=\tilde{U}$ with proba. $\min \left(1, \omega(\tilde{U}) / \omega\left(U_{k}\right)\right)$ and
$\mathrm{U}_{\mathrm{k}+1}=\mathrm{U}_{\mathrm{k}}$ otherwise

Light and Widely Applicable MCMC: the algorithm

 Starting with a random $\theta_{0} \in \Theta, U_{0} \subseteq\{1, \ldots, N\}$ and $\left|U_{0}\right|=n$$$
\left(\theta_{0}, \mathrm{U}_{0}\right) \rightarrow\left(\theta_{1}, \mathrm{U}_{1}\right) \rightarrow\left(\theta_{2}, \mathrm{U}_{2}\right) \rightarrow \cdots \rightarrow\left(\theta_{k}, \mathrm{U}_{\mathrm{k}}\right)
$$

step (i) Refreshing the subset U_{k}
\Rightarrow propose a new subset $\tilde{U} \sim K\left(U_{k}, \cdot\right)$
\Rightarrow set $U_{k+1}=\tilde{U}$ with proba. $\min \left(1, \omega(\tilde{U}) / \omega\left(U_{k}\right)\right)$ and
$\mathrm{U}_{\mathrm{k}+1}=\mathrm{U}_{\mathrm{k}}$ otherwise
step (ii) Simulation of θ_{k+1}

Light and Widely Applicable MCMC: the algorithm

 Starting with a random $\theta_{0} \in \Theta, U_{0} \subseteq\{1, \ldots, N\}$ and $\left|U_{0}\right|=n$$$
\left(\theta_{0}, \mathrm{U}_{0}\right) \rightarrow\left(\theta_{1}, \mathrm{U}_{1}\right) \rightarrow\left(\theta_{2}, \mathrm{U}_{2}\right) \rightarrow \cdots \rightarrow\left(\theta_{k}, \mathrm{U}_{\mathrm{k}}\right)
$$

step (i) Refreshing the subset U_{k}
\Rightarrow propose a new subset $\tilde{U} \sim K\left(U_{k}, \cdot\right)$
\Rightarrow set $U_{k+1}=\tilde{U}$ with proba. $\min \left(1, \omega(\tilde{U}) / \omega\left(U_{k}\right)\right)$ and
$\mathrm{U}_{\mathrm{k}+1}=\mathrm{U}_{\mathrm{k}}$ otherwise
step (ii) Simulation of θ_{k+1}
\Rightarrow from θ_{k}, propose a candidate $\tilde{\theta} \sim Q\left(\theta_{k}, \cdot\right)$

Light and Widely Applicable MCMC: the algorithm

Starting with a random $\theta_{0} \in \Theta, U_{0} \subseteq\{1, \ldots, N\}$ and $\left|U_{0}\right|=n$

$$
\left(\theta_{0}, \mathrm{U}_{0}\right) \rightarrow\left(\theta_{1}, \mathrm{U}_{1}\right) \rightarrow\left(\theta_{2}, \mathrm{U}_{2}\right) \rightarrow \cdots \rightarrow\left(\theta_{k}, \mathrm{U}_{\mathrm{k}}\right),
$$

step (i) Refreshing the subset U_{k}
\Rightarrow propose a new subset $\tilde{U} \sim K\left(U_{k}, \cdot\right)$
\Rightarrow set $U_{k+1}=\tilde{U}$ with proba. $\min \left(1, \omega(\tilde{U}) / \omega\left(U_{k}\right)\right)$ and
$\mathrm{U}_{\mathrm{k}+1}=\mathrm{U}_{\mathrm{k}}$ otherwise
step (ii) Simulation of θ_{k+1}
\Rightarrow from θ_{k}, propose a candidate $\tilde{\theta} \sim Q\left(\theta_{k}, \cdot\right)$
\Rightarrow set $\theta_{k+1}=\tilde{\theta}$ with proba.:

$$
\alpha\left(\theta_{k}, \tilde{\theta} \mid \cup_{\mathrm{k}+1}\right)=\min \left\{1, \frac{f\left(Y_{\ell}, \ell \in U_{\mathrm{k}+1} \mid \tilde{\theta}\right) p(\tilde{\theta}) Q\left(\tilde{\theta}, \theta_{k}\right)}{f\left(Y_{\ell}, \ell \in \mathrm{U}_{\mathrm{k}+1} \mid \theta_{\mathrm{k}}\right) p\left(\theta_{k}\right) Q\left(\theta_{\mathrm{k}}, \tilde{\theta}\right)}\right\}
$$

and $\theta_{k+1}=\theta_{k}$ otherwise.

LWA-MCMC: summary

Given the CPU budget τ available

LWA-MCMC: summary

Given the CPU budget τ available
(i) select the subset size n
\Rightarrow to get a reasonable nb of samples $\theta_{1}, \theta_{2}, \ldots$ using the ressource τ

LWA-MCMC: summary

Given the CPU budget τ available
(i) select the subset size n
\Rightarrow to get a reasonable nb of samples $\theta_{1}, \theta_{2}, \ldots$ using the ressource τ
(ii) decide on a set of summary statistics S and on ϵ

LWA-MCMC: summary

Given the CPU budget τ available
(i) select the subset size n
\Rightarrow to get a reasonable nb of samples $\theta_{1}, \theta_{2}, \ldots$ using the ressource τ
(ii) decide on a set of summary statistics S and on ϵ
(iii) run LWA-MCMC
\Rightarrow retrieve samples $\theta_{1}, \theta_{2}, \ldots, \theta_{L}$

LWA-MCMC: summary

Given the CPU budget τ available
(i) select the subset size n
\Rightarrow to get a reasonable nb of samples $\theta_{1}, \theta_{2}, \ldots$ using the ressource τ
(ii) decide on a set of summary statistics S and on ϵ
(iii) run LWA-MCMC
\Rightarrow retrieve samples $\theta_{1}, \theta_{2}, \ldots, \theta_{L}$
The set of "good" parameters can now be found in an interval \mathcal{I}^{*} such that

$$
\operatorname{Pr}\left(\theta \in \mathcal{I}^{*} \mid Y_{1}, \ldots, Y_{N}\right) \approx \frac{1}{L} \sum_{\ell=1}^{L} \#\left\{\theta_{\ell} \in \mathcal{I}^{*}\right\}
$$

is sufficiently high.

Outline

Topics of interest / Keywords

\Rightarrow Bayesian inference
\Rightarrow Posterior distribution
\Rightarrow Markov chain Monte Carlo methods
\Rightarrow our method: Light and Widely Applicable MCMC
\Rightarrow Applications: Regression, Classification, Shape recognition...

Example: estimation of template shapes

Data are handwritten digits (MNIST database)

Figure: example of data

■ The dataset contains $N=10,000$ images of size 16×16
■ Each image belongs to a class $I_{k} \in\{1, \ldots, 5\}$ assumed to be known
■ The model writes:

$$
I_{k}=i, \quad Y_{k}=\phi\left(\theta_{i}\right)+\sigma^{2} \varepsilon_{k}, \quad \varepsilon_{k} \sim \mathcal{N}(0,1)
$$

Example: estimation of template shapes

Computational budget: 60 mins, we choose $n=100$ S is the proportion of digits of each class
\Rightarrow We maintain in each subset the correct proportion of 1,2 ,etc.

Figure: Efficiency of template estimation through $\mathrm{M}-\mathrm{H}$ and LWA-MCMC.

Example: estimation of template shapes

Quantitatively: $d(t)=\sum_{i=1}^{5}\left\|\theta_{i}^{*}-\frac{1}{L(t)} \sum_{\ell=1}^{L(t)} \theta_{i, \ell}\right\|$,

Example: regression in ARMA model

Data: a very long time series $\left\{Y_{t}, t \in \mathbb{N}\right\}$

$$
Y_{t+1}=\alpha Y_{t}+\beta Z_{t}+Z_{t+1}+\gamma
$$

where

- $Z_{t+1} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- we set $\alpha=0.5, \beta=0.7, \gamma=1, \sigma=1$
- Summary statistic S : autocorrelation time

We want to estimate $\theta=(\alpha, \beta, \gamma)$ from the observations Y_{1}, Y_{2}, \ldots

Figure: Realization of an ARMA of lenght $T=10^{7}$

Example: regression in ARMA model

Figure: M-H (dashed, blue) and LWA-MCMC (dashed, black $n=100$ and red $n=1000$)

Example: regression in ARMA model

Evolution of the estimates of α, β and γ for different subset sizes $n=10,000, n=1000$ and $n=100$

Example: regression in ARMA model

Conclusion

■ LWA-MCMC approach works on subsets of data which are representative of the full data set

Conclusion

- LWA-MCMC approach works on subsets of data which are representative of the full data set
- for a given CPU budget, the number of samples L from a proxy of $\operatorname{Pr}\left(\cdot \mid Y_{1}, \ldots, Y_{N}\right)$ can be made arbitrarily large

Conclusion

- LWA-MCMC approach works on subsets of data which are representative of the full data set
- for a given CPU budget, the number of samples L from a proxy of $\operatorname{Pr}\left(\cdot \mid Y_{1}, \ldots, Y_{N}\right)$ can be made arbitrarily large
- obviously as $n / N \ll 1$, results deteriorate...

Conclusion

- LWA-MCMC approach works on subsets of data which are representative of the full data set
- for a given CPU budget, the number of samples L from a proxy of $\operatorname{Pr}\left(\cdot \mid Y_{1}, \ldots, Y_{N}\right)$ can be made arbitrarily large
- obviously as $n / N \ll 1$, results deteriorate...

■ but inference can be corrected by being more "picky" with respect to the subsets

Conclusion

- LWA-MCMC approach works on subsets of data which are representative of the full data set
- for a given CPU budget, the number of samples L from a proxy of $\operatorname{Pr}\left(\cdot \mid Y_{1}, \ldots, Y_{N}\right)$ can be made arbitrarily large
- obviously as $n / N \ll 1$, results deteriorate...
- but inference can be corrected by being more "picky" with respect to the subsets
\Rightarrow A ready-to-use method for efficient Bayesian inference in large data contexts
\Rightarrow Work ahead investigates the theoretical implication of our approximation

Thank you for your interest!

