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Outline of talk

I Introduction/overview of literature on the Bayesian inference for tall
data

I Generally, two types of approaches:
I Divide-and-conquer: partition the data into subsets, process each

batch separately and then combine the inferences.
I Sub-sampling strategies: reduce the computational burden of

Metropolis-Hastings.
I Our approach falls under the category of sub-sampling strategies.
I The main idea is to fix the subset size n� N and to focus on

those sub-samples that are similar to the full data, in terms of
how close the summary statistics of the sub-sample is to summary
statistics of the full data.

I It therefore shares some similarities with Approximate Bayesian
Computation.
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Metropolis-Hastings sampler in Big Data problems

I Consider the posterior distribution

π(θ |Y1, . . . ,YN) ∝ f (Y1, . . . ,YN | θ)p(θ)

where f ( · |Y1, . . . ,YN) is the likelihood model and p the prior
distribution.

I Metropolis-Hastings simulates a Markov chain {θk}k targeting
π( · |Y1, . . . ,YN), transition θk → θk+1 follows:

(1) draw θ̃ ∼ Q(θk , ·)
(2) set θk+1 = θ̃ with probability

A(θk , θ̃) = 1 ∧ f (θ̃ |Y1, . . . ,YN)p(θ̃)Q(θ̃, θk )
f (θk |Y1, . . . ,YN)p(θk )Q(θk , θ̃)

and θk+1 = θk w.p. 1− A(θk , θ̃).



Another way of looking at the MH algorithm

Transition θk → θk+1 follows:
(1) draw θ̃ ∼ Q(θk , ·) and Wk ∼ unif(0, 1)

(2-a) Let E (N)
k be the event

E (N)
k (θk , θ̃,Wk) =

{
Wk ≤ 1 ∧ f (θ̃ |Y1, . . . ,YN)p(θ̃)Q(θ̃, θk)

f (θk |Y1, . . . ,YN)p(θk)Q(θk , θ̃)

}
(2-b) Set

θk+1 =
{
θ̃ if E (N)

k (θk , θ̃,Wk)
θk otherwise

⇒ A MH transition is thus a statistical hypothesis test: does E (N)
k occur

or not?



Making the decision with sub-samples of data?

I Is it possible to make the same decision as MH (with a large
probability), without computing f (θ̃ |Y1, . . . ,YN)?

I Make the decision to accept/reject θ̃ based on a subset of n� N
data:

E (n)
k (θk , θ̃,Wk) =

{
Wk ≤ 1 ∧ f (θ̃ |Y ∗1 , . . . ,Y ∗n )p(θ̃)Q(θ̃, θk)

f (θk |Y ∗1 , . . . ,Y ∗n )p(θk)Q(θk , θ̃)

}
rather than on E (N)

k .



Making the decision with sub-samples of data?

I Austerity in MCMC land: Cutting the M–H budget, Korattikara et
al, 2013

I Towards scaling up MCMC: an adaptive subsampling approach,
Bardenet et al, 2014

I On MCMC methods for tall data, Bardenet et al, 2015
I Random Projections in MCMC for tall data, Bardenet et al, 2016

However, these methods are no longer exact in that the chain {θk}k does
not admit π( · |Y1, . . . ,YN) as stationary distribution.



First approach: Austerity in MCMC land, Korattikara 2013
Rewriting E (N)

k in case of i.i.d. data

E (N)
k (θk , θ̃,Wk) =


1
N log

(
Wk

p(θ̃)Q(θ̃, θk)
p(θk)Q(θk , θ̃)

)
︸ ︷︷ ︸

µ0

≤ 1
N

N∑
`=1

log f (θ̃ |Y`)
f (θk |Y`)︸ ︷︷ ︸
µ


I draw without replacement n data Y ∗1 , . . . ,Y ∗n
I calculate µ̃(n) = n−1∑n

`=1 log
f (θ̃ |Y ∗` )
f (θk |Y ∗` )

I test H(n)
0 = {µ0 = µ̃(n)} vs H(n)

1 = {µ0 6= µ̃(n)}
I subsample data until P(H(n)

1 ) > 1− ε
I make decision using µ̃(n) instead of µ:

E (n)
k (θk , θ̃,Wk) =

{
µ0 ≤ µ̃(n)

}



Second approach: Confidence sampler (Bardenet et al,
2014, 2015)

Assume that a concentration inequality exists for the model, i.e

∀ n ≤ N ,∃ cn > 0, δn ∈ (0, 1) , P
(∣∣∣µ− µ̃(n)

∣∣∣ ≤ cn

)
≥ 1− δn .

For example, choose δn ∈ (0, 1) and cn is defined as

cn(δn) = σn,θ,θ̃

√
2 log(3/δn)

n +
6Cθ,θ̃ log(3/δn)

n
where

I σn,θ,θ̃ is the sample standard deviation of
{log f (θ̃ |Y ∗i )/f (θ |Y ∗i )}n

i=1
I Cθ,θ̃ = maxi=1:n(log f (θ̃ |Y ∗i )/f (θ |Y ∗i ))
⇒ draw data Y ∗1 , . . . ,Y ∗n such that as soon as:∣∣∣µ̃(n) − µ0

∣∣∣ > cn ,

then decisions based on E (n)
k and E (N)

k are the same with probability
1− δn.



Subsampling approaches

I Subsampling approaches share the same philosophy:
Draw more data until a decision replicating MH can be made with a
level of confidence.

I Bardenet et al.’s works offer more theoretical guarantees
(e.g ergodicity, quantification of the error,...)
But comes at the price of more intermediate calculations σn,θ,θ̃ and
Cθ,θ̃.

I Critically, the adaptive subset size n tends to N as the chain is close
to equilibrium.



Consensus Monte Carlo (Scott et al, 2013)

This approach exploits parallel computing in a very natural way.

I Split the dataset into S (independent) batches Y1:N = Y 1, . . . ,Y S
and note that

π(θ |Y1, . . . ,YN) ∝ ΠS
i=1f (Y i )p(θ)1/S

I Generate S independent Markov chains (in parallel) targeting
{π(θ |Y i ) ∝ f (Y i )p(θ)1/S}S

i=1
I Derive a weighted average of the S chains

θk =
{ S∑

i=1
Wi

}−1 S∑
i=1

Wiθ
(i)
k

I This is justifiable when π is Gaussian, but questions about the
convergence of {θk}k and the choice of {Wi}S

i=1 remains open



Exact methods

MCMC methods producing a chain that admits π(θ |Y1, . . . ,YN) as
invariant distribution:

• Using unbiased estimate of f (θ |Y1:N)
Pseudo-Marginal literature: Andrieu & Vihola 2012, Doucet et al 2012,
Quiroz et al, 2016

• A sub-optimal M–H transition kernel
Accelerating M–H algorithms: Delayed acceptance with prefetching,
Banterle et al, 2014

• An auxiliary variable MCMC, under strong assumptions
FireFly Monte Carlo: Exact MCMC with subsets of data, MacLaurin et
al, 2014



An alternative approach

Definition
Let K be the M–H kernel targeting π(· |Y1, . . . ,YN)
Let U ⊂ {1, . . . ,N} and KU be the M–H kernel targeting π(· |YU)

Assumption
τ(K ) = O(N) and for U = {1, . . . , n}, τ(KU) = O(n)

For a given CPU budget τ0:
I the number of M-H iterations is fixed (potentially low if N � 1)
I can we derive an algorithm that achieves an arbitrary large number

of iterations for a small subset size n?



Inference based on subposteriors

Definition
Let YU be a subset of Y1:N of size n and π̄n be a scaled subposterior

π̄n(θ |YU) ∝ f (YU | θ)N/np(θ)
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Exponential family: an optimality result

Assume that f belongs to the curved exponential family

f (y | θ) ∝ ψ(θ) exp{φ(θ)TS(y)} .

Definition
For any subset U ∈ Un, define the vector of sufficient statistics between
the whole dataset and the sub-sample YU as:

∆n(U) =
N∑

k=1
S(yk)− N

n
∑
k∈U

S(yk)



Exponential family: an optimality result
The KL divergence between two measure π and π̄ is defined as
KL(π, π̄) = Eπ{log π(θ)/π̄(θ)}.

Proposition
For any U ∈ Un, the following inequality holds:

KL(π, π̄n( · |YU)) ≤ B(Y ,U) ,

where

B(Y ,U) = logEπ exp {‖Eπ(φ(θ))− φ(θ)‖ ‖∆n(U)‖} .

Corollary
1. For any subset U ∈ Un such that

(1/N)
∑N

k=1 S(Yk) = (1/n)
∑

k∈U S(Yk), then π = π̄( · |YU)
π-almost everywhere.

2. Let (U1,U2) ∈ U2
n . Assume ‖∆n(U1)‖ ≤ ‖∆n(U2)‖, then

B(Y ,U1) ≤ B(Y ,U2).



Optimal result in asymptotic regime (when N →∞)
If a Bernstein-von Mises theorem holds for π, i.e π can be approximated
by a Normal distribution π̃ = N(θMLE, (1/N){I(θMLE)}−1).

Definition
Define K̂Ln(U) as the Kullback-Leibler divergence between the
asymptotic approximation of π and π̄n( · |YU):

K̂Ln(U) = Eπ̃ log
π(θ |Y )
π̄n(θ |YU) .

Proposition
Let (U1,U2) ∈ U2

n .
Assume that for all i ∈ {1, . . . , d}, |∆n(U1)(i)| ≤ |∆n(U2)(i)|, where
|∆n(U1)(i)| refers to the i-th element of ∆n(U1). Then
K̂Ln(U1) ≤ K̂Ln(U2).

⇒ This is a stronger result on partial ordering on subsets not on the KL
bound but on the KL itself.



Example (Toy Example: probit model)
Simulate N = 10, 000 observations Y1, . . . ,YN

I Xk ∼ N (θ, 1)
I Yk |Xk = δ(Xk>0)( · )

π(θ |Y1:N) ∝ p(θ)(1− α(θ))N (α(θ)/1− α(θ))
∑N

k=1
Yk

π̄n(θ |YU) ∝ p(θ)(1− α(θ))N (α(θ)/1− α(θ))
N
n

∑
k∈U

Yk

where α(θ) = P{Xk > 0 |Xk ∼ N (θ, 1)}.
Define

|∆n(U)| =

∣∣∣∣∣
N∑

k=1
Yk −

N
n
∑
k∈U

Yk

∣∣∣∣∣
(note that

∑N
k=1 Yk is a sufficient statistics.)



Probit Example: n = 100
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Figure: Sub-posteriors with different subsets U of size n = 100.



Probit Example: n = 1, 000
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π̃n , ‖∆n(U)‖ = 14

π̃n , ‖∆n(U)‖ = 26

π̃n , ‖∆n(U)‖ = 34

Figure: Sub-posteriors with different subsets U of size n = 1, 000.

‖∆n(U)‖ KL(π, π̃n( · |YU)) B(Y ,U)
4 0.004 0.04
14 0.11 0.18
26 0.19 0.29
34 0.41 0.54

Table: Comparison of the KL divergence between π and some sub-posterior
distributions with different ‖∆n(U)‖.
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From summary statistics to sufficient statistics

y 7→ f (y | θ) is now any likelihood model and the data are no longer
assumed to be independent.

Definition
Let

I S : Y → S be a mapping of summary statistics
I ∆n(U) = S(Y1, . . . ,YN)− N

n S(YU)
I Un be the set of all possible subset of {1, . . . ,N} of size n

For each U ∈ Un, a weight νn,ε(U) is assigned to the subset of data YU

νn,ε(U) ∝ exp
{
−ε‖∆n(U)‖2} .

I ε→∞: all the subsets have the same weight
I ε→ 0: the mass is centered on the most representative subset



Informed Subsampling MCMC

Recall that Metropolis-Hastings produces a chain {θk}k

(i) θ̃ ∼ Q(θ, · ) (ii) A(θ, θ̃) = 1 ∧ f (θ̃ |Y1, . . . ,YN)p(θ̃)Q(θ̃, θ)
f (θ |Y1, . . . ,YN)p(θ)Q(θ, θ̃)

Our idea is to define a chain {θk}k that evolves as follows:

(i) θ̃ ∼ Q(θ, · ) (ii) A(θ, θ̃) = 1 ∧ f (θ̃ |YU)p(θ̃)Q(θ̃, θ)
f (θ |YU)p(θ)Q(θ, θ̃)

This chain targets π̄n(θ |YU) which is of little interest, since likely to be
far from π (see probit Example).



Informed Subsampling MCMC

Based on the analysis of exponential models, we consider the following
algorithm. It produces a chain {θk ,Uk}k as follows.
1. Update the subset:

1.1 propose U ′ ∼ R(Uk , ·)
1.2 set Uk+1 with probability 1 ∧ exp {ε (‖∆n(Uk )‖ − ‖∆n(U ′)‖)}

2. Update the parameter:
2.1 propose θ′ ∼ Q(θk , ·)
2.2 set θk+1 with probability Ã(θ, θ′|Uk+1) = 1 ∧ α̃(θ, θ′|Uk+1) where

α̃(θ, θ′|U) =
f (θ′ |YUk+1 )p(θ′)Q(θ′, θ)
f (θ |YUk+1 )p(θ)Q(θ, θ′) .

Note that the first step is independent of θk .
In fact, it is straightforward to show that {Uk}k is νn-reversible Markov
chain.



Convergence of perturbed Markov chains

Consider a Metropolis-Hastings algorithm whose ratio α(θ, θ′) is
perturbed through some noisy auxiliary variables U: α̃(θ, θ′ |U).

Proposition (Alquier 2016, Corollary 2.3)
If we can bound the expected error between α and α̃ s.t.

E {|α(θ, θ′)− α̃(θ, θ′ |U)|} ≤ δ(θ, θ′) ,

then:
lim

n→∞
‖π − µP̃n‖ ≤ κ sup

θ∈Θ

∫
Θ
Q(θ,dθ′)δ(θ, θ′) , (1)

where
I P̃ is the transition kernel of the noisy algorithm
I κ is a constant depending on the efficiency of the non-noisy

Metropolis Hastings chain.



Convergence of {θk}k

We cast the analysis of Informed Subsampling chain {θk}k in the noisy
MCMC framework.

Proposition
Under regularity assumption on the function θ 7→ f (YU | θ)N/n/f (Y | θ),
there is a constant λ such that

Eν
{∣∣α(θ, θ′)− α̃(θ, θ′ |U)

∣∣} ≤ α(θ, θ′)λ‖θ − θ′‖Φ(θ) ,

where

Φ(θ) = Eν
{

f (Y | θ)
f (YU | θ)N/n

}
∝
∑

U∈Un

ν(U) f (Y | θ)
f (YU | θ)N/n .

The RHS’s expectation can be unstable if an unappropriate weight
distribution is used.



Convergence of {θk}k

Proposition
For exponential models, we prove the following:

f (Y | θ)
f (YU | θ)N/n = o(1/ν(U)) .

and thus Φ(θ) is bounded.
For general models, this proposition serves as a way to validate summary
statistics:

Rule
Let f be a general likelihood model and S a possible summary statistics
vector. If there is a β such that

| log f (Y | θ)− (N/n) log f (YU | θ)| ≤ β‖∆n(U)‖ ,

then S is sensible choice of summary statistics.
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Example 1: estimation of template shapes

Data are of handwritten digits (MNIST database)

Figure: example of data

I The dataset contains N = 10, 000 images of size 16x16
I Each image belongs to a class Ik ∈ {1, . . . , 5} assumed to be known
I The model can be written as:

Ik = i , Yk = φ(θi ) + σ2εk , εk ∼ N (0, 1) .



Example 1: estimation of template shapes

I Computational budget: τ0 = 60 mins.,
I We compare M–H and LWA-MCMC with subset of n = 100 digits,
ε = 1 and S(U) = (S1(U), . . . ,S5(U)) with Si (U) =

∑
k∈U Ik

I τMH = 41.2 secs and τInformed Subsampling-MCMC = 0.7 secs (60 ×
faster)

time M–H LWA–MCMC
3 mins

15 mins

30 mins

60 mins



Example 1: estimation of template shapes
Consider the metric d(t) =

∑5
i=1

∥∥∥θ∗i − 1
L(t)

∑L(t)
`=1 θi,`

∥∥∥ , where:
I L(t) is the number of iterations completed at time t
I θ∗i is the map of model i (estimated from stochastic EM)



Example 1: Sampling at stationarity
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Figure: Comparing the true and approximate marginal distribution of one
parameter of θ1 (left) and one parameter of θ5 (right)



Example 2: Auto regressive model Example (AR(2))

An AR(2) model, parameterized by θ = (θ1 θ2, θ3)

yt = θ1yt−1 + θ2yt−2 + ζt , ζt ∼ N (0, θ2
3) .

I Simulation of a TS of N = 106 observations,
I Approximate inference with n ∈ {102, 103}
I Different Summary statistics are tried:

I S(y ′) = {ρ1(y ′), . . . , ρ5(y ′)} where ρi (y ′) is the i-th lag sample
autocorrelation

I S(y ′) = θYW(y ′), the estimation of θ via Yule Walker method based
on data y ′

I Different ε were used.
I Our approach is tested versus MH implementation (prior, proposal,

etc. ) proposed in Chib, Understanding Metropolis
Samples from π( · | y) were obtained via MH on the whole dataset (a
laborious work!).



Example 2: validation of summary statistics

Try S defined as the estimated ACF (first 5 coefficients)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−8

−6

−4

−2

0

2

4

6

8

10
x 10

4 Statistics set as autocorrelation function

||S(Y)−(N/n)S(Y
U

)||/N

lo
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Y

|θ
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)

⇒ S rejected, φ(θ) is unstable.



Example 2: validation of summary statistics
Try S defined as the Yule Walker coefficients
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Statistics set as Yule Walker coefficient

⇒ S accepted since the log ratio does not grow faster than linearly in
‖S(Y )− (N/n)S(YU)‖.



Example 2: marginal inference of θ1 (n = 100)
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Example 2: marginal inference θ1 (n = 1, 000)
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Example 2: marginal inference θ1 (n = 1, 000)
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Comparing with inference provided by a subposterior π̃n(θ1 |YU) given a
fixed subset U: green is the best subset (as per measured by S) and gray
is a subset picked at random.



Example 2: joint inference (θ2, θ3)
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Figure: Samples from π(θ2, θ3 |Y ) obtained using Metropolis-Hastings (blue)
and from π̃n(θ2, θ3 |Y ) obtained using Informed Subsampling MCMC (green),
with n = 100 (left) and n = 1, 000 right.



Conclusions

"Uninformed" Subsampling MCMC
I Are designed so as to control locally the decision error wrt to the

MH algorithm.
I Checking conditions in which this framework applies may be difficult

in practice.
I The number of likelihood evaluation is not fixed, questioning the

computational efficiency.
I Subsample the data uniformly at random

By contrast, our Informed Subsampling MCMC scheme
I Allows to control deterministically the MH transition complexity.
I Subsamples according to their fidelity to this full dataset, through

summary statistics.
I Allows to control only asymptotically the distance between the chain

distribution and the true posterior.
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