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Outline of talk

> Introduction/overview of literature on the Bayesian inference for tall
data

> Generally, two types of approaches:
» Divide-and-conquer: partition the data into subsets, process each
batch separately and then combine the inferences.
> Sub-sampling strategies: reduce the computational burden of
Metropolis-Hastings.

» Our approach falls under the category of sub-sampling strategies.

» The main idea is to fix the subset size n < N and to focus on
those sub-samples that are similar to the full data, in terms of
how close the summary statistics of the sub-sample is to summary
statistics of the full data.

> It therefore shares some similarities with Approximate Bayesian
Computation.
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Metropolis-Hastings sampler in Big Data problems

» Consider the posterior distribution

7T(6‘| Yl,...7YN)O(f(Yl,...,YN|6‘)p(9)

where (-] Y1,.

.., Yn) is the likelihood model and p the prior
distribution.

» Metropolis-Hastings simulates a Markov chain {6}« targeting
w(-]Y1,..., Yn), transition 6 — 0411 follows:

(1) draw 6 ~ Q(bk,-)

(2) set Ox41 = 6 with probability

A(b, 8) =1 A 011, Yw)p(6)QD, 0x)

and Oxi1 = Ok w.p. 1 — A(6x,0).



Another way of looking at the MH algorithm

Transition 6 — 6041 follows:
(1) draw 8 ~ Q(6y,-) and Wy ~ unif(0, 1)

(2-a) Let E,EN) be the event

ElEN)(Gk,é, Wk) = {Wk <1A
(2-b) Set
0 if EM(0y, 0, W)
9 — k sV
kel { 0, otherwise

)

= A MH transition is thus a statistical hypothesis test: does E,EN occur

or not?



Making the decision with sub-samples of data?

> Is it possible to make the same decision as MH (with a large
probability), without computing (6| Y1,..., Yn)?

» Make the decision to accept/reject 6 based on a subset of n < N
data:

E (0,0 W, :{W <1A -
(O ) k= F(Or | YT Y )p(0k) Q(Ok,

rather than on E,EN).



Making the decision with sub-samples of data?

» Austerity in MCMC land: Cutting the M—H budget, Korattikara et
al, 2013

» Towards scaling up MCMC: an adaptive subsampling approach,
Bardenet et al, 2014

» On MCMC methods for tall data, Bardenet et al, 2015
» Random Projections in MCMC for tall data, Bardenet et al, 2016

However, these methods are no longer exact in that the chain {6y}« does
not admit 7(-| Y1,..., Yn) as stationary distribution.



First approach: Austerity in MCMC land, Korattikara 2013

(V)

Rewriting E, " in case of i.i.d. data

o 1 0
N N — (0 | Yo)
Ho m
» draw without replacement n data Y7, ..., Y,
> calculate i = n=137) | (fk“’;f))

> test HY" = {1 = i} vs Hf = {po # "}
> subsample data until IP’(H{")) >1—¢
» make decision using /i{") instead of s

Eé")(@k,é, Wk) = {/‘0 < /7(”)}



Second approach: Confidence sampler (Bardenet et al,
2014, 2015)

Assume that a concentration inequality exists for the model, i.e

Vn<N,3c >0,0,€(0,1), IP’(

/1,—/7(")’ Sc,,) >1-4,.

For example, choose §, € (0,1) and ¢, is defined as

[210g(3/5,)  6C, ;log(3/6n
Cn((sn) = Unﬁ,(; Og(n/ ) + 5.9 ng( / )

> 0, is the sample standard deviation of
{log F(6 Y7")/F(01Yi")} i
> Gy = maxi—1n(log (0] Y;7)/F(0]Y]))
= draw data Y7, ..., Y, such that as soon as:

where

(n)

" — ol > cn,
then decisions based on E,E") and E,EN) are the same with probability

1—6,.



Subsampling approaches

» Subsampling approaches share the same philosophy:

Draw more data until a decision replicating MH can be made with a
level of confidence.

» Bardenet et al's works offer more theoretical guarantees
(e.g ergodicity, quantification of the error,...)
But comes at the price of more intermediate calculations o, , 5 and
c . 9,
0,

» Critically, the adaptive subset size n tends to N as the chain is close
to equilibrium.



Consensus Monte Carlo (Scott et al, 2013)

This approach exploits parallel computing in a very natural way.

> Split the dataset into S (independent) batches Y.y = Y1,...,Ys
and note that

7(0] Y1, ..., Yu) o< M2, F(Y)p(60)"/°

» Generate S independent Markov chains (in parallel) targeting
{m(01Y) o F(Y)p(0)/°}2y

» Derive a weighted average of the S chains

s -l s .
= {w) S
i=1

i=1

» This is justifiable when 7 is Gaussian, but questions about the
convergence of {fx}x and the choice of {W;}?_; remains open



Exact methods

MCMC methods producing a chain that admits (6] Y1,..., Yn) as
invariant distribution:

o Using unbiased estimate of (6| Y1.n)
Pseudo-Marginal literature: Andrieu & Vihola 2012, Doucet et al 2012,
Quiroz et al, 2016

o A sub-optimal M-H transition kernel
Accelerating M—H algorithms: Delayed acceptance with prefetching,
Banterle et al, 2014

o An auxiliary variable MCMC, under strong assumptions
FireFly Monte Carlo: Exact MCMC with subsets of data, MacLaurin et
al, 2014



An alternative approach

Definition
Let K be the M—H kernel targeting w(-| Y1,..., Yn)
Let UC {1,...,N} and Ky be the M—H kernel targeting 7(- | Yu)

Assumption
7(K) = O(N) and for U= {1,...,n}, 7(Ky) = O(n)

For a given CPU budget 7q:
» the number of M-H iterations is fixed (potentially low if N >> 1)

> can we derive an algorithm that achieves an arbitrary large number
of iterations for a small subset size n?



Inference based on subposteriors

Definition
Let Yy be a subset of Yi.n of size n and 7, be a scaled subposterior

(0] Yu) o F(Yu|0)N"p(6)
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Some results on exponential models



Exponential family: an optimality result

Assume that f belongs to the curved exponential family
F(y16) oc (0) exp{o(0)"S(v)} -
Definition

For any subset U € U, define the vector of sufficient statistics between
the whole dataset and the sub-sample Yy as:

N
ZS Yk —*ZS}’k
k=1



Exponential family: an optimality result
The KL divergence between two measure 7 and 7 is defined as
KL(w,7) = E {log7(0)/7(0)}.
Proposition
For any U € U, the following inequality holds:
KL(m, (- | Yu)) < B(Y, U),

where

B(Y, U) = log Er exp {[[Ex(6(6)) — ¢()I | An(U)]1} -

Corollary

1. For any skllbset U € U, such that
(L/N)2k=1 S(Yi) = (1/) iy S(Yi), then m = 7(-| Yu)
m-almost everywhere.

2. Let (Uy, Us) € U?. Assume | A,(Ur)]| < ||An(Us)
B(Y, U;) < B(Y, Us).

, then




Optimal result in asymptotic regime (when N — o0)

If a Bernstein-von Mises theorem holds for 7, i.e ™ can be approximated
by a Normal distribution # = N(6MLE (1/N){I(OMLE)}—1).

Definition

Define KL,(U) as the Kullback-Leibler divergence between the
asymptotic approximation of w and T,(-|Yu):

m(0]Y)

Proposition

Let (Ul7 U2) S Z/[S

Assume that for all i € {1,...,d}, |A,(UD)D] < |A,(Us)D)
|AL(Up)D| refers to the i-th element of A,(U;). Then
KLn(U) < KLa(U2).

, where

= This is a stronger result on partial ordering on subsets not on the KL
bound but on the KL itself.



Example (Toy Example: probit model)
Simulate N = 10,000 observations Y1,..., Yn
> X ~ ./\/(9, 1)
> Yi| Xk = dx>0)( )
7(6] Yin) x p(O)(1 - a(8))" (a(6)/1 — a(9))2=k1 ™
7al6] Yo) o p(B)(1 — a(8))" (a(6)/1 — a(6)) F 2oneo ™

where 04(9) = P{Xk >0 | Xy ~ N(@, 1)}

Define
N N
D Y= i
k=1

keU

1An(U)] =

(note that Z,’:’Zl Yy is a sufficient statistics.)



Probit Example: n = 100
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Figure: Sub-posteriors with different subsets U of size n = 100.



Probit Example: n = 1,000

n=1,000
T

— o, [ An(U)]] =4

25 5, [A0)] =14
T, 184(0)]] =26
20| —— s 18,0 =34

Figure: Sub-posteriors with different subsets U of size n = 1, 000.

[An(V)II | KL(, 7a(-] Yu)) | B(Y,U)
4 0.004 0.04
14 0.11 0.18
26 0.19 0.29
34 0.41 0.54

Table: Comparison of the KL divergence between 7 and some sub-posterior
distributions with different ||A,(U)]|.
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Generalization of the approach beyond the exponential case



From summary statistics to sufficient statistics

y — f(y|8) is now any likelihood model and the data are no longer
assumed to be independent.

Definition
Let
» S:Y — S be a mapping of summary statistics
> An(U) =S(Y1,..., Yn) — ES(Yy)
> U, be the set of all possible subset of {1, ..., N} of size n

For each U € U,, a weight v, (U) is assigned to the subset of data Yy

Un,e(U) x exp {—e||An(U)||2} .

> ¢ — oo: all the subsets have the same weight

» ¢ — 0: the mass is centered on the most representative subset



Informed Subsampling MCMC

Recall that Metropolis-Hastings produces a chain {6y}«

s . ~ o FO] Y Ya)p(0)Q(8,0)
(6 ~Q,-) (i) A(0,0) =1A . Y

Our idea is to define a chain {0}« that evolves as follows:

F(01vu)p(6)Q(8, )
F(01Y0)p(0)Q(8, )

(V6 ~QW,-) (i)A®B,H) =1A

This chain targets 7,(0 | Yy) which is of little interest, since likely to be
far from 7 (see probit Example).



Informed Subsampling MCMC

Based on the analysis of exponential models, we consider the following
algorithm. It produces a chain {0, Ui}« as follows.

1. Update the subset:
1.1 propose U’ ~ R(Ux, )
1.2 set Uky1 with probability 1 A exp {e (||An(Uk)|| — |A(U")])}

2. Update the parameter:
2.1 propose 0’ ~ Q(0k,-)
2.2 set Ox41 with probability A(0,60|Uks1) = 1 A &(0,0'|Uis1) where

F0"1 Yo, )p(0")Q(E', 6)
f(e ‘ YUk}l)p(e)Q(97 0’) '
Note that the first step is independent of 6.

In fact, it is straightforward to show that { U}« is v,-reversible Markov
chain.

a(0,0'|u) =



Convergence of perturbed Markov chains

Consider a Metropolis-Hastings algorithm whose ratio «(6,8’) is
perturbed through some noisy auxiliary variables U: a(6, 6’ | U).

Proposition (Alquier 2016, Corollary 2.3)

If we can bound the expected error between o and & s.t.
E{|a(0,0") — a(0,0" | U)|} < 4(0,0"),
then:
lim |7 — pP"|| < nsup/ Q(0,d0")5(6,6"),
n—o0 e Jo

where
» P is the transition kernel of the noisy algorithm

> K is a constant depending on the efficiency of the non-noisy
Metropolis Hastings chain.



Convergence of {0}«

We cast the analysis of Informed Subsampling chain {6}« in the noisy
MCMC framework.

Proposition

Under regularity assumption on the function 0 — f(Yy |0)"V/" /f(Y |6),
there is a constant A such that

]EV{|a(0, 0') — a6, | U)|} < (6,00 —0'||®(0),

where

_ F(Y19) F(Y19)
*0 == T} * 2 Ot

Uel,

The RHS’s expectation can be unstable if an unappropriate weight
distribution is used.



Convergence of {0y}«

Proposition
For exponential models, we prove the following:

f(Y16)
ooy = o).

and thus ®(0) is bounded.

For general models, this proposition serves as a way to validate summary
statistics:

Rule
Let f be a general likelihood model and S a possible summary statistics
vector. If there is a 3 such that

[log £(Y'[0) — (N/n)log f(Yy |0)| < Bl An(U)II,

then S is sensible choice of summary statistics.
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Illustration



Example 1: estimation of template shapes

Data are of handwritten digits (MNIST database)

Figure: example of data

» The dataset contains N = 10,000 images of size 16x16
» Each image belongs to a class /x € {1,...,5} assumed to be known
» The model can be written as:

k=i, Yi=0¢(0)+ o, ex ~N(0,1).



Example 1: estimation of template shapes

» Computational budget: 79 = 60 mins.,
» We compare M-H and LWA-MCMC with subset of n = 100 digits,
e =1and S(U) = (51(V),...,Ss(V)) with S;(U) = >, cy Ik

> vH = 41.2 secs and Tinformed Subsampling-MCMC = 0.7 secs (60 X

faster)

time
3 mins

15 mins

30 mins

60 mins

M-H
ENEEE
EEELE
RS
RIS

LWA-MCMC

EENEEN



Example 1: estimation of template shapes

Consider the metric d(t) = Zs )

» L(t) is the number of iterations completed at time t

L(t
,7WZ()012

, Where:

» 0% is the map of model i (estimated from stochastic EM)

function d(t)

o M-H
o o LWA-MCMC
o
o

o
o
oo
%00
000
010000000004,
0000,

5 10 15 20 25 30 35 40 45 50 55 60
time t (min)



Example 1: Sampling at stationarity

H
informedSubsampling-MCMC

07 065 07 075 08 0.85 09 095 1 105

Figure: Comparing the true and approximate marginal distribution of one
parameter of 6, (left) and one parameter of 05 (right)



Example 2: Auto regressive model Example (AR(2))
An AR(2) model, parameterized by 6 = (6, 65, 63)

Ye=01ye-1+02ye 2+ (e, Ce~N(0,63).

Simulation of a TS of N = 10° observations,
Approximate inference with n € {102,103}
Different Summary statistics are tried:

> S(y') = {p(y'),...,ps(y')} where p;(y’) is the i-th lag sample
autocorrelation

> S(y") = 6™ (y'), the estimation of 6 via Yule Walker method based
on data y’

v

v

v

Different € were used.

v

v

Our approach is tested versus MH implementation (prior, proposal,
etc. ) proposed in Chib, Understanding Metropolis

Samples from (- | y) were obtained via MH on the whole dataset (a
laborious work!).



Example 2: validation of summary statistics

Try S defined as the estimated ACF (first 5 coefficients)

x 10" Statistics set as autocorrelation function
10 T T T T

log f(Y|8)-(N/n)log f(YU|e)

Il P Il Il L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
IISCN-(NM)S(Y N

= S rejected, ¢(0) is unstable.



Example 2: validation of summary statistics

Try S defined as the Yule Walker coefficients

x10° Statistics set as Yule Walker coefficient

08 N

0.6

o
IS

0.2

log (¥16)-log f(Y,,16)

. . . . . . . . .
0 002 004 006 008 01 012 014 016 018 02
[IS(-(NM)S(Y YIN

= S accepted since the log ratio does not grow faster than linearly in

I5(Y) = (N/n)S(Yu)ll-



Example 2: marginal inference of 6; (n = 100)

Informed Subsampling, n=100

500 T T T

400 -

350

300

250

150

1.01 1.02 1.03 1.04 1.05



Example 2: marginal inference 6; (n = 1,000)

500

450

400

350

300

250

150

Informed Subsal

mpling, n:
T

=1,000

=== —e=le6




Example 2: marginal inference 6; (n = 1,000)

450

[NRN s
= = = subposterior using one subset 4
= = = subposterior using the best subset
= |nformed Subsampling

400

350

300 -

250

200

150 -

100

50~

0 f 1 g I
0.994 0.996 0.998 1 1.002 1.004 1.006 1.008

Comparing with inference provided by a subposterior 7,(61 | Yy) given a
fixed subset U: green is the best subset (as per measured by S) and gray
is a subset picked at random.



Example 2: joint inference (65, 03)

Informed Subsampling MCMC, n=100 Informed Subsampling MCMC, n=1,000

1.004 1.004
1.003 1.003 q
1.002 1.002
1.001 1.001
&1 & 1
0.999 0.9991-
0.998 0.9981-
0.997 - ' 0.997} 1
0% e0s -05 -0.495 09505 -05 -0.495
92 92

Figure: Samples from m(6>, 03| Y') obtained using Metropolis-Hastings (blue)
and from 7,(02, 03| Y') obtained using Informed Subsampling MCMC (green),
with n =100 (left) and n = 1,000 right.
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Conclusions

"Uninformed" Subsampling MCMC

> Are designed so as to control locally the decision error wrt to the
MH algorithm.

» Checking conditions in which this framework applies may be difficult
in practice.

» The number of likelihood evaluation is not fixed, questioning the
computational efficiency.

» Subsample the data uniformly at random
By contrast, our Informed Subsampling MCMC scheme
> Allows to control deterministically the MH transition complexity.

» Subsamples according to their fidelity to this full dataset, through
summary statistics.

» Allows to control only asymptotically the distance between the chain
distribution and the true posterior.
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