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Context

I Monte Carlo methods
Estimating integrals of functions f : X ⊂ Rd → R

I =
∫

f (x)π(dx)

I Markov chain Monte Carlo
When simulating i.i.d. draws from π is not feasible, simulate a
Markov chain

Xn+1 ∼ K (Xn, ·)
I Metropolis-Hastings

1 propose X̃ ∼ Q(Xn, ·)
2 accept/reject i.e set Xn+1 = X̃ with proba.

α(Xn,Xn+1) = 1 ∧ π(X̃)Q(X̃ ,Xn)
π(Xn)Q(Xn, X̃)

and set Xn+1 = Xn otherwise



Shortcomings of Metropolis-Hastings

Each transition
Xn → Xn+1

requires calculating the target distribution’s pdf i.e π(X̃ )

In Bayesian analysis, where

π ≡ π(θ | y) ∝ f (y | θ)p(θ)

problems arise when
1. the likelihood function is not tractable
⇒ MH can simply be not used!

2. the likelihood function evaluation is prohibitively slow
⇒ MH can be implemented but will potentially generate only a few
Markov chain samples for a (very) long run time
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Noisy Metropolis-Hastings
I In M-H, conditionally on (Xn, X̃ ), the acceptance ratio

a(Xn, X̃n) = π(X̃ )Q(X̃ ,Xn)
π(Xn)Q(Xn, X̃ )

(1)

is deterministic
I noisy M-H: replace a(Xn, X̃ ) by an estimator â(Xn, X̃ )
⇒ conditionally on (Xn, X̃ ), â(Xn, X̃n) is a random variable

I If π is intractable but can be estimated pointwise i.e for all X

π̂(X ) ≈ π(X )

e.g by Monte Carlo, then use

â(Xn, X̃n) = π̂(X̃ )Q(X̃ ,Xn)
π̂(Xn)Q(Xn, X̃ )

1

1the idea was initially suggested by O’Neill, Philip D., et al. "Analyses of infectious
disease data from household outbreaks by Markov chain Monte Carlo methods."
Journal of the Royal Statistical Society: Series C (Applied Statistics) 49.4 (2000):
517-542.



Consequences of using a noisy acceptance ratio

I Metropolis-Hastings is by construction π-reversible and thus π
invariant i.e

if X0 ∼ π and X1 ∼ K (X0, ·) ⇒ X1 ∼ π

or
∫
π(dx0)K (x0,dx1) = π(dx1)

I Replacing a(x , y) by a random variable â(x , y) induces a noise and
in general,

if X0 ∼ π and X1 ∼ K̂ (X0, ·) ⇒ X1 6∼ π

I Two notorious exceptions where replacing a(x , y) by â(x , y) gives a
π-invariant chain:

I the exchange algorithm (Murray et al, 2006)
I the pseudo-marginal algorithm (Roberts and Andrieu, 2009)

We assume hereafter that the noisy chains considered are not π-invariant
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Computationally efficient algorithms (1/2)

At first glimpse, noisy MCMC appears useless since even asymptotically

‖P{X̂n ∈ ·} − π‖ 6→ 0

However, at best one would hope that an exact Markov chain is
uniformly ergodic

‖P{Xn ∈ ·} − π‖ ≤ Cρn

i.e drawing from π asymptotically, only



Computationally efficient algorithms (2/2)

Now, suppose that
I we can have a noisy Markov chains that satisfies

‖P{X̂n ∈ ·} − π‖ ≤ ζ + Cρn

where ζ is a constant that results from using â instead of a.
I CPU time to generate one draw from the noisy chain τ̂ (compared

to an exact chain τ) satisfies

τ̂ � τ e.g τ = κτ̂ κ� 1

Then for a given amount of CPU time:

‖P{X̂κn ∈ ·} − π‖ ≤ ζ + Cρκn ≤ Cρn = ‖P{X̂n ∈ ·} − π‖

⇒ the error term ζ is balanced out by the faster decay of the exponential
component.



Asymptotically efficient algorithm
I Suppose that the M-H ratio a(x , y) is not tractable but another

ratio ã(x , y) is and leaves the chain invariant i.e

(i) X̃ ∼ Q(x , ·) (ii) accept X̃ w.p. ã(x , tx)

is a π-invariant Markov chain
I Peskun (1973) showed that for a given Randow Walk proposal Q,

the Metropolis-Hastings acceptance ratio a yields the smallest
possible asymptotic variance i.e in the limit of large n

varMH,n(f ) := 1
nVar

n∑
k=1

f (Xk) ≤ varP,n(f ) := 1
nVar

n∑
k=1

f (Xk)

I How is the asymptotic variance degraded when the ã is used instead
of a?
⇒ What if ã� a?

I Noisy MCMC suggests that using an inexact acceptance ratio â that
is approximates may allow to inherit the optimal asymptotic
properties of MH.
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Two main contexts of interest

π ≡ π(θ | y) ∝ f (y | θ)p(θ)

I Computational complexity of the likelihood

f (y | θ) is very slow to evaluate

Examples:
I tall dataset contexts
I missing data models

I Intractable likelihood

f (y | θ) = q(θ, y)
Z (θ) , Z (θ) :=

∫
q(θ,dy) is intractable

Example:
I Gibbs random fields
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Efficient MCMC for tall dataset (1/3)
Suppose y = {y1, y2, . . . , yn} is a very large dataset and f has no
sufficient statistics, e.g log f (y , θ) = R(y , θ) where R is non linear.

I Metropolis-Hastings acceptance ratio is

a(θ, θ′) = p(θ′)Q(θ′, θ)
p(θ)Q(θ, θ′) e{R(y ,θ′)−R(y ,θ)}

=∗
p(θ′)Q(θ′, θ)
p(θ)Q(θ, θ′) e

∑N
k=1
{R(yk ,θ

′)−R(yk ,θ)} (2)

I In Informed Subsampling MCMC (Maire et al., 2017), we propose
using

â(θ, θ′,U) = p(θ′)Q(θ′, θ)
p(θ)Q(θ, θ′) e{R(yU ,θ

′)−R(yU ,θ)}

=∗
p(θ′)Q(θ′, θ)
p(θ)Q(θ, θ′) e

∑
k∈U
{R(yk ,θ

′)−R(yk ,θ)} (3)

where U ⊂ {1, . . . ,N} and |U| � N such that yU is a subsampling
of y which is drawn such that yU and y have similar summary
statistics.



Efficient MCMC for tall dataset (2/3)
Consider the following logistic regression model with N = 106

observations
(i) simulate Xi,1, . . . ,Xi,N ∼ N (0, (1/d)2)
(ii) simulate Yi given θ and Xi as

Yi =
{

1 w.p. 1
/{

1 + e−θT X
}

0 otherwise
(4)

Goal: estimation of some probability

π{D} =
∫
1D(θ)π(dθ | y)

Figure: ISS-MCMC: our "fast" MCMC method with different subsampling size
n



MCMC for tall dataset (3/3)



MCMC for tall dataset

I Subset of size n = 1, 000� N = 106

I Uniform subsampling (ε = 0) and Informed Subsampling (ε� 1)



Latent position model (Rastelli et al., 2017) (1/3)
I y is a network with N nodes and {yi,j}i 6=j is the adjacency matrix
I a latent (unknown) position zi ∈ (−1, 1)2 is assigned to each node i
I the complete data likelihood writes

f (y | z , θ) =
∏
i<j

p(zi , zj ; θ)yi,j (1− p(zi , zj ; θ))1−yi,j ,

p(zi , zj ; θ) = exp{θ − ‖zi − zj‖}
1 + exp{θ − ‖zi − zj‖}

(5)

and CPU cost grows in O(N2)
I define a grid that spans (−1, 1)2 in blocs B = {b1, . . . ,bM}
I approximate the likelihood contribution of node 1∏

j>1
p(z1, zj ; θ)y1,j (1− p(z1, zj ; θ))1−y1,j

by ∏
bk∈B

p(z1,bk ; θ)|bk (z)|(1− p(z1,bk ; θ))1−|bk (z)|



Latent position model (2/3)

I This approximation can be applied to the M-H acceptance ratio
I Approximate

a(θ, z , θ′, z ′) = p(θ′, z ′)Q(θ′, z ′, θ, z)
p(θ, z)Q(θ, z , θ′, z ′) ×

f (y | θ′, z ′)
f (y | θ, z)

where f (y | z , θ) =
∏
i<j

p(zi , zj ; θ)yi,j (1−p(zi , zj ; θ))1−yi,j = O(N2)

by

âB(θ, z , θ′, z ′) = p(θ′, z ′)Q(θ′, z ′, θ, z)
p(θ, z)Q(θ, z , θ′, z ′) ×

f̂B(y | θ′, z ′)
f̂B(y | θ, z)

where

f̂B(y | z , θ) =
N∏

i=1

∏
bk∈B

p(zi ,bk ; θ)|bk (z)|(1−p(zi ,bk ; θ))1−|bk (z)| = O(N)



Latent position model (3/3)
Co-authorship network (papers submitted on arXiv in the astro-physics
category): 18, 872 authors
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The exchange algorithm

I When the likelihood f (y | θ) ∝ q(y , θ′) has an intractable
normalizing constant, an exact MH algorithm still exists:

I Replace
a(θ, θ′) = q(y , θ′)p(θ′)Q(θ′, θ)

q(y , θ)p(θ)Q(θ, θ′) ×
Z (θ)
Z (θ′)

by

âEX(θ, θ′, y ′) = q(y , θ′)p(θ′)Q(θ′, θ)
q(y , θ)p(θ)Q(θ, θ′) ×

q(y ′, θ)
q(y ′, θ′) y ′ ∼ f ( · | θ′)

I This algorithm is known as the exchange algorithm (Murray, 2006)
and is exact i.e

‖PEX{Xn ∈ · } − π‖ → 0



Drawbacks of the exchange

I Empirical results have shown that the exchange suffers from large
asymptotic variance (i.e low asymptotic efficiency)

I Peskun (1973) showed that for a given Randow Walk proposal Q,
the Metropolis-Hastings acceptance ratio a yields the smallest
possible asymptotic variance
⇒ How is the asymptotic variance degraded when the exchange
ratio is used?

I How to remedy to it?



The exchange inefficiency
I Roughly speaking, the Peskun ordering says that

the larger the chance to move from current state
⇒ the smallest the asymptotic variance

I We have established that
Pθ,θ′{a(θ, θ′) ≥ âEX(θ, θ′)} ≥ 1/2

and that this probability increases with ‖θ − θ′‖
I this is illustrated as follows for an exponential random graph model



Noisy Metropolis-Hastings for exponential random graphs

I finding an unbiased positive estimate of the likelihood normalizing
constant is (very) challenging
⇒ Pseudo-marginal algorithms cannot be used

I in some instances, finding an unbiased estimate of the ratio is
possible, e.g for exponential models

q(y , θ) = eg(θ)T S(y) ⇒ Z (θ)
Z (θ′) = Ef ( · | θ′)

{
eg(θ)T S(Y ′)

eg(θ′)T S(Y ′)

}
I Replace

a(θ, θ′) = q(y , θ′)p(θ′)Q(θ′, θ)
q(y , θ)p(θ)Q(θ, θ′) ×

Z (θ)
Z (θ′)

by

â(θ, θ′) = q(y , θ′)p(θ′)Q(θ′, θ)
q(y , θ)p(θ)Q(θ, θ′) ×

1
n

n∑
i=1

q(y ′i , θ)
q(y ′i , θ′)

, y ′1, y ′2, . . . ∼ f ( · | θ′)



Illustration: Exponential Graph Models

I For this type of model, q(y , θ) = exp{θT S(y)} where S is a
sufficient statistics vector that characterizes the model

I The Zachary Karate Club dataset with 2 statistics: # edges and #
shared partnership (i.e # of connected nodes with exactly the same
number of common neighbours)

noisy MH
type of algo exchange n = 5 n = 100 n = 1, 000 ?

random walk proposal 1 1.3 1.6 1.8 1.9
independent proposal 1 1.4 2.3 3.0 3.6

Table: Effective sample size (relative to the exchange)
?: noisy MH with a more sophisticated estimator of the normalizing constant.
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Theoretical issues

The previous experiments have shown that using an approximation of the
Metropolis-Hastings acceptance ratio

I allows to devise algorithms that have smaller computational
complexity

I allows to devise algorithms that are asymptotically more efficient
than existing ones

One central question remains to be addressed
I how can we trust the outputs of the those noisy chains i.e

lim
n→∞

‖P{X̂n ∈ · } − π‖ → ε� 1 ?

I in particular, can they be used to form an estimator i.e

lim
n→∞

∣∣∣∣∣1n
n∑

k=1
f (X̂k)− I

∣∣∣∣∣→ ε� 1 ?
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Uniformly ergodicity of K

Under uniform ergodicity assumption for the exact kernel K i.e

sup
x∈X
‖P{Xn ∈ · } − π‖ ≤ Cρn ,

Mitrophanov (2005) showed that for sufficiently large n

sup
x∈X
‖K n(x , ·)− K̂ n(x , ·)‖ ≤

{
λ+ C ρ

λ − ρn

1− ρ

}
sup
x∈X
‖K (x , ·)− K̂ (x , ·)‖

(λ =
⌈
logρ C−1⌉)



Alquier et al. 2016
Alquier et al. (2016) showed that for a M-H randomized acceptance ratio
âη(x , y)

sup
x∈X
‖K (x , ·)− K̂ (x , ·)‖ ≤ sup

x∈X

∫
Q(x ,dy)Eη {|a(x , y)− âη(x , y)|}

When âη,N is a Monte Carlo estimate of a i.e a(x , y) =
∫

a(x , y , ξ)f (dξ)

âξ,N(x , y) = 1
N

N∑
k=1

a(x , y , ξk) , ξ1, ξ2, . . . ∼i.i.d. f

Then

sup
x∈X
‖K n(x , ·)− K̂ n(x , ·)‖ ≤

{
λ+ C ρ

λ − ρn

1− ρ

}
Φ(Q, π)Var{âξ,N(x , y)}1/2

=
{
λ+ C ρ

λ − ρn

1− ρ

}
Φ(Q, π) 1N Var{a(x , y , ξ)}1/2



Johndraw et al. (2017) (1/2)

The Authors work in the framework where
I K satisfies a Doeblin condition, i.e there exists κ ∈ (0, 1) s.t.

sup
(x ,y)∈X2

‖K (x , ·)− K (y , ·)‖ ≤ 1− κ

I There exists γ ∈ (0, 1) such that the approximate kernel satisfies

sup
x∈X
‖K (x , ·)− K̂ (x , ·)‖ ≤ γ

If ε < α/2, K̂ also satisfies a Doeblin condition and has an invariant
measure π̂ s.t.

‖π − π̂‖ ≤ γ/α .



Johndraw et al. (2017) (2/2)

The Authors work in the framework where
I K satisfies a Doeblin condition, i.e there exists κ ∈ (0, 1) s.t.

sup
(x ,y)∈X2

‖K (x , ·)− K (y , ·)‖ ≤ 1− κ

I There exists γ ∈ (0, 1) such that the approximate kernel satisfies

sup
x∈X
‖K (x , ·)− K̂ (x , ·)‖ ≤ γ

In this case, we have

1
‖f ‖2
∗
E

{∫
f (x)dπ(x)− 1

n

n−1∑
k=0

f (X̂k)
}2

≤ 4γ2

α2 +O(1/n)

for any function f satisfying ‖f ‖∗ := infλ∈R supx∈X |f (x) + λ| <∞.
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Results in Wasserstein distance
The Wasserstein distance between two measures (µ, ν) is defined as

Wd (µ, ν) = inf
Γ∈C(µ,ν)

x
d(x , y)Γ(dµ,dν)

Assumption on K If there exists C > 0, ρ ∈ (0, 1)

sup
x 6=y

Wd (K n(x , ·),K n(y , ·))
d(x , y) ≤ Cρn

Assumption on K̂ There exists V : X→ (0,∞), δ ∈ (0, 1) and L > 0

K̂ V̂ (x) ≤ δV̂ (x) + L ∀ x ∈ X

then
W (pn, p̂n) ≤ C(1− ρn) γκ

1− ρ
where

γ = sup
x∈X

Wd (K (x , ·), K̂ (x , ·))
V̂ (x)



Application to noisy Metropolis-Hastings (and comparison
with Alquier et al.)

Rudolf et al. assume (i) K is geometrically ergodic, (ii) P satisfies a drift
condition i.e δ ∈ (0, 1) and L > 0

∀ x ∈ X, KV (x) ≤ δV (x) + L

then

Wd (µ0K n, µ0K̂ n) ≤ C 1− ρn

1− ρ max{µ0V , L/(1− δ)}

sup
x∈X

∫
Q(x ,dy)d(x , y) |α(x , y)− Eη{α̂η(x , y)}|

V (x)

In contrast, Alquier et al. assume (i) K is uniformly ergodic and

‖µ0K n − µ0K̂ n‖ ≤ λ+ C ρ
λ − ρn

1− ρ sup
x∈X

∫
Q(x ,dy)Eη |α(x , y)− α̂η(x , y)|
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Discussion

I Many statistical applications are incompatible with
Metropolis-Hastings

I Alternative exact algorithms such as the exchange or the
pseudo-marginal are in practice often disappointing

I Noisy MCMC methods are usually more efficient in practice (we
have shown some such examples) but also more complicated to
validate theoretically

I Replacing the acceptance ratio by a Monte Carlo estimate, one want
to pick an estimator with a variance as small as possible (see Alquier
et al.)

I Uniform ergodicity is a strong assumption for most MCMC
applications (e.g unbounded & high dimensional) state space

I Ergodicity in the Wasserstein distance is appealing as the weighted
nature of the distance (by the function V ) allows to handle
unbounded state space
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