Approximated Bayesian Inference and Applications to Large Data Sets

Florian Maire, UCD

joint work with : Nial Friel & Pierre Alquier

Working Group on Statistical Learning, 23th of September 2014

- 4 回 ト 4 ヨ ト 4 ヨ ト

1 Motivations & main Problematic

2 Some recent Approaches

3 Approximated Bayesian Inference

3

イロン イ理 とくほとう ほんし

Outlines

1 Motivations & main Problematic

2 Some recent Approaches

3 Approximated Bayesian Inference

э

イロト イヨト イヨト イヨト

Bayesian inference at large

Modelling & Data Analysis using Bayesian methods :

■ Robustness and simplicity are attracting for a wide range of people / domains

F. Maire (UCD)

Estimation of the parameter

• The data are random var. on (Y,\mathcal{Y}) (typ. $\mathsf{Y} \subseteq \mathbb{R}^p$)

The parameter θ is (regarded as) random var. on (Θ, ϑ) (typ. $\Theta \subseteq \mathbb{R}^d$)

Given:

- (i) a likelihood model $f_{\theta} \equiv f(\cdot | \theta)$ on (Y, Y),
- (ii) a prior dist. p for θ on (Θ, ϑ)
- define the posterior distribution of θ given $Y_{1:N} = (Y_1, \ldots, Y_N) \in Y^N$

 $\pi(\theta \mid Y_{1:N}) \propto f(Y_{1:N} \mid \theta) p(\theta)$

 our primary objective is to gain knowledge of π, (we assume likelihood model and prior known and fixed...)

イロト 不得 トイラト イラト 一日

Markov chain Monte Carlo: the black box!!

- Seminal papers late 80's/early 90's 1 popularised the use of Markov chains targeting π to explore the state space Θ
- The Metropolis-Hastings (M–H) sampler being the most straightforward *black box*
- Start from some initial state $\theta_0 \in \Theta$. At step k:
 - (i) Propose a move $ilde{ heta} \sim Q(heta_k, \cdot)$

(ii) Set θ_{k+1} as the next state of the chain if event E_k is realized:

$$\mathsf{\textit{E}}_{\textit{\textit{k}}} = \left\{ \textit{\textit{U}} \leq \frac{\textit{\textit{f}}(\tilde{\theta} \mid \textit{\textit{Y}}_{1:\textit{\textit{N}}})\textit{\textit{p}}(\tilde{\theta})\textit{\textit{Q}}(\tilde{\theta}, \theta_{\textit{k}})}{\textit{\textit{f}}(\theta_{\textit{k}} \mid \textit{\textit{Y}}_{1:\textit{\textit{N}}})\textit{\textit{p}}(\theta_{\textit{k}})\textit{\textit{Q}}(\theta_{\textit{k}}, \tilde{\theta})}, \quad \textit{\textit{U}} \sim \mathsf{Uni}(0, 1) \right\}$$

What if N becomes larger and larger?? (e.g $N > 10^6$)

¹Tanner & Wong (1987), Gelfand & Smith (1990), Tierney (1994), ... (1994), .

The N case

- A likelihood function evaluation has a complexity in $\mathcal{O}(N)$
- M-H (or other MCMC's) & optimization methods are severely hampered by a large N
- When comparing MCMC algorithms
 - (i) Autocorrelation
 - (ii) Asymptotic Variance
 - (iii) Time of transition
- From this perspective, one can expect M–H to be badly ranked!
- Example: for a likelihood function

$$f(\cdot | \theta) = 0.8 \mathcal{N}(0.3, 0.8) + 0.2 \mathcal{N}(4, 1)$$

and *i.i.d.* data

Ν	1.000	10.000	100.000	10 ⁶	1	0 ⁷
M–H trans. CPU Time	0.016	0.151	1.53	15.40	151.87	
			• • • • • • • • •	<	1	うくで
F. Maire (UCD)						7 / 33

Main Problematic

How to rescue the traditional Bayesian analysis methods (i) from being overwhelmed by *N*, (ii) while still preserving the *black box* thing?

イロト イポト イヨト イヨト

Outlines

1 Motivations & main Problematic

2 Some recent Approaches

3 Approximated Bayesian Inference

э

<ロト <回ト < 回ト < 回ト < 回ト -

Profusion of Research on this topic over the last years

Exact Methods:

• Using unbiased estimate of $f(\theta | Y_{1;N})$ for all $\theta \in \Theta$ (Pseudo-Marginal literature, Andrieu & Vihola 2012, Doucet et al 2012)

• A sub-optimal M–H transition kernel

Accelerating M–H algorithms: Delayed acceptance with prefetching, Banterle et al, 2014

• An auxiliary variable MCMC, under strong assumptions FireFly Monte Carlo: Exact MCMC with subsets of data, MacLaurin et al, 2014

Approximated Methods with error control

• A proxy of the M–H kernel with complexity $\leq O(N)$ Austerity in MCMC land: Cutting the M–H budget, Korattikara et al, 2013 Towards scaling up MCMC: an adaptive subsampling approach, Bardenet et al, 2014

イロト 不得 トイヨト イヨト 二日

And also at UCD!

- Connected with other Research activities at UCD
- Bayesian inference in large networks
 - Aidan Boland: Noisy M-H / Application to the Ising model
 - Lampros Bouranis: Composite Likelihood Inference / Application to Exponential Random Graph model
 - and probably others!

イロン 不聞 とくほとう ほとう

Korattikara et al. / Bardenet et al.

Roughly share the same idea:

 \blacksquare Rewrite the acceptance step of M–H as the realization of the event

$$E_{k} = \left\{ \frac{1}{N} \sum_{k=1}^{N} \log \frac{f(Y_{k} | \tilde{\theta})}{f(Y_{k} | \theta_{k})} \geq \frac{1}{N} \log U \frac{p(\tilde{\theta})Q(\tilde{\theta}, \theta_{k})}{p(\theta_{k})Q(\theta_{k}, \tilde{\theta})}, \quad U \sim \mathsf{Uni}(0, 1) \right\}$$

■ Draw wo replacement, sub batch of data from the data set (successively) up until the event E_ℓ is realized:

$$\tilde{E}_{k,\ell} = \left\{ \left| \frac{1}{n_{\ell}} \sum_{k=1}^{n_{\ell}} \log \frac{f(Y_{u_k} \mid \tilde{\theta})}{f(Y_{u_k} \mid \theta_k)} - \psi(\theta_k, \tilde{\theta}, U) \right| > \eta_{\ell} \right\}$$

• The threshold η_ℓ is defined so that

$$\mathbb{P}[E_k = \tilde{E}_{k,\ell}] \geq \epsilon$$

イロト 不得 トイヨト イヨト

So why should we keep on asking questions?!

Three main reasons:

- As the Markov chain gets closer to equilibrium $n_\ell o N$ *i.e* all data are used
- Computational gains are highly model specific:

Figure: Two different classification tasks (*Covtype* Dataset (I) and a Synthetic 2D binary decision (r) in Bardenet et al.)

only applicable for independent data

F. Maire (UCD)

< □ > < □ > < □ > < □ > < □ > < □ >

Our Motivations

- Design a new MCMC approach so that, by construction, each transition's complexity is deterministic in O(n), $n \ll N$
- Do not restrict to *i.i.d.* data
 - Markov models,
 - Time series,
 - Networks...
- While all the mentioned approaches have stand by the standard posterior distribution $\pi(\cdot | Y_{1:N})$, we rather investigate the feasibility / efficiency to learn from a changing subset data of size $n \ll N$
- We don't consider a pre-processing data reduction step (ACP, clustering,...) as we want a method as simple as it can gets, (black-box)

・ロト ・ 同ト ・ ヨト ・ ヨト

Outlines

1 Motivations & main Problematic

2 Some recent Approaches

3 Approximated Bayesian Inference

3

<ロト <回ト < 回ト < 回ト < 回ト -

Learning from a proxy of π

• We fix $n \in \mathbb{N}$, $n \ll N$

• Let U_n be the set of all possible integer combinations such that:

 $U_n = \{U = (U_1, \ldots, U_n) \in [1, N]^n, \quad \forall (i, j) \in [1, n], U_i \neq U_j\}$

The question we address is twofold:

(i) Does it exist a subset $U_n^* \subseteq U_n$ s.t. for $U \in U_n^*$, $\pi(\theta \mid Y_k, k \in U) := \pi(\theta \mid Y_U) \approx \pi(\theta \mid Y_{1:N})$

(ii) How can we find such \mathcal{U}_n^* ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Representativeness of a subset of data

We introduce a *Summary Statistics* mapping, projecting a batch of data $\{Y_U, U \in U_n\}$ onto a space of smaller dimension $S \subseteq \mathbb{R}^m$

$$S_n: \mathcal{U}_n \to \mathcal{S}$$

Define the probability measure $\nu_{n,\epsilon}$ on the discrete state space $(\mathcal{U}_n, \mathscr{U}_n)$

$$\forall U \in \mathcal{U}_n, \quad \nu_{n,\epsilon}(U) = \frac{\Phi\left(\|S(U) - s\|/\epsilon\right)}{\sum_{V \in \mathcal{U}_n} \Phi\left(\|S(V) - s\|/\epsilon\right)}$$

where:

- $\Phi: \mathbb{R}^+ \to \mathbb{R}^+$ is a kernel function
- $\epsilon > 0$ is a *bandwidth* attached to Φ
- $s = S_N(\{1, \dots, N\})$ the summary statistic vector of the full data set

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Heuristic

The intuition is that for all $(U, V) \in \mathcal{U}_n^2$

$$\nu_{n,\epsilon}(U) > \nu_{n,\epsilon}(V) \rightsquigarrow d(\pi; \tilde{\pi}(\,\cdot \mid Y_U)) \le d(\pi; \tilde{\pi}(\,\cdot \mid Y_V)), \tag{1}$$

for some distance measure on the set of proba on (Θ, ϑ) .

- (1) requires a *reasonable* choice of S_n to be meaningful
- Connection with ABC (Approximated Bayesian Computation)

ABC	Subset Inf.		
$ heta \sim {m Q}$	$U \sim R$		
$ ilde{Y} \sim f(\cdot heta)$	$ heta \sim \pi(\cdot \mid Y_U)$		
Accept $ heta$ with probability			
$ u_{\pmb{N},\epsilon}(\tilde{\pmb{Y}})$	$ u_{n,\epsilon}(U)$		

■ Take advantage of ABC literature to design relevant S_n

(日)

The case of curved exponential family models

• Consider *i.i.d.* observations from some exponential model $Y_k \sim f(\cdot | \theta)$, where

$$f(y \mid \theta) = \exp \langle h(heta), S(y)
angle \left/ \int_{\mathsf{Y}} \exp \langle h(heta), S(y')
angle \mathrm{d}y'$$

- Here, the choice of Summary Statistics in our approach is naturally provided by the Sufficient Statistics of the exponential model
- In this special case, we show that given $U \in \mathcal{U}_n$

$$\mathsf{KL}\left(\pi \,\|\, \tilde{\pi}(\,\cdot \mid Y_U)\right) \leq \Psi(n, N, Y_{1:N}, p) + B(U)\,, \tag{2}$$

イロト イヨト イヨト

where $B:\mathcal{U}_n \to \mathbb{R}^+$ such that for all $U \in \mathcal{U}_n$

$$B(U) = 0 \iff \frac{1}{N} \sum_{k=1}^{N} S(Y_k) = \frac{1}{n} \sum_{k \in U} S(Y_k).$$

Regarding U as a missing parameter of the model

- These two arguments give credit to the intuition that "some subsets are better than others"
- Issues:
 - \mathcal{U}_n^{\star} is unlikely to be restricted to a single element (esp. as $d \nearrow$)
 - and even in such a case, wouldn't it be more interesting to account for a collection of good subset
- \blacksquare A collection of good subsets may act somehow complementarily to track π
- Define the proxy of the target as

$$\tilde{\pi}_{n,\epsilon}(\theta \mid Y_{1:N}) = \sum_{U \in \mathcal{U}_n} \tilde{\pi}(\theta \mid Y_U) \nu_{n,\epsilon}(U)$$

yielding a mixture model with $\binom{n}{k}$ components...

(日)

Sample $(Y_1, \ldots, Y_N) \in (\{0\}, \{1\})^N$, independently from the model

(i) $X_k \sim \mathcal{N}(\mu, 1),$ (ii) $Y_k = \mathbb{1}_{\{X_k > 0\}}$

Can we estimate $\mu \in \mathbb{R}$ from $\tilde{\pi}_{n,\epsilon}$ rather than from π ?

• Settings: N = 1000, n = 100, $\epsilon = 1$, $S_n(U) = \frac{1}{n} \sum_{k \in U} Y_k$

In this toy example, the likelihood evaluation is NOT in O(N) and the exact posterior writes:

$$\pi(heta \mid Y_{1:N}) \propto p(heta) \left(1 - lpha(heta)
ight)^N \left(rac{lpha(heta)}{1 - lpha(heta)}
ight)^{\sum_{k=1}^N Y_k}$$

\$\pi(\cdot | Y_{1:N})\$ can be explored through standard M-H
Similarly, given \$U \in \$U_n\$, \$\tilde{\pi}(\cdot | Y_U)\$ can be estimated by standard M-H

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Figure: Density estimation – $S_n(U_1) = 0.71$, $S_n(U_2) = 0.77$, $S_n(U_3) = 0.84$, $S_N = 0.843$

At first sight, $\tilde{\pi}_{n,\epsilon}$ remains far from π ... However, our main interest is to approximate the expectation $\int_{\Theta} H(\theta)\pi(d\theta \mid Y_{1:N}) \quad \text{by} \quad \int_{\Theta} H(\theta)\tilde{\pi}_{n,\epsilon}(d\theta \mid Y_{1:N})$

F. Maire (UCD)

F. Maire (UCD)

æ

Variance of the TCL estimate

$$\sigma_L^2 = rac{1}{L} \mathsf{Var}\left(\sum_{k=1}^L \mu_k
ight)$$

 $\sigma_L^2 = 0.0105$ for π , $\sigma_L^2 = 0.0305$ for $\tilde{\pi}_{n,\epsilon}$ for L = 10.000but when we "time normalize":

(

A general approach

In general, sampling from the mixture

$$ilde{\pi}_{n,\epsilon}(heta \mid Y_{1:N}) = \sum_{U \in \mathcal{U}_n} ilde{\pi}(heta \mid Y_U)
u_{n,\epsilon}(U)$$

is not feasible ($N \gg n$, model more complex than the Probit example...)

• We propose an MCMC algorithm on the extended state space $(\Theta \times U_n, \vartheta \otimes \mathscr{U}_n)$ with target distribution

$$\tilde{\pi}_{n,\epsilon}(\theta, U \mid Y_{1:N}) = \tilde{\pi}(\theta \mid Y_U) \nu_{n,\epsilon}(U)$$

• The Markov chain $\{(\theta_k, U_k), k \in \mathbb{N}\}$ will marginally target $\tilde{\pi}_{n,\epsilon}(\cdot \mid Y_{1:N})$

イロト 不得 トイヨト イヨト

The ideal Markov chain

The desired scheme of the chain would be as follow:

Figure: Intertwined structure of the desired Markov chain

To avoid getting stuck on some *optimal* block of data:

(i) make two distinct decisions for a move on Θ and on U_n
(ii) U_{k+1} should depend only on U_k for optimal mixing

mimicking independence sampler (if $\nu_{n,\epsilon}$ could be drawn from!)

- 4 回 ト - 4 三 ト

The Markov chain we actually use...

Figure: A Markov chain with two independent decisions

We haven't been able yet to find a proper way to make the marginal chain $\{U_k, k \in \mathbb{N}\}$ independent of $\{\theta_k, k \in \mathbb{N}\}$

イロト 不得 トイラト イラト 一日

ARMA model

Observation $\{Y_t, t \in \mathbb{N}\}$

$$Y_{t+1} = \alpha Y_t + \beta Z_t + Z_{t+1} + \gamma$$

where

• $Z_{t+1} \sim \mathcal{N}(0, \sigma^2)$

•
$$lpha=$$
 0.5, $eta=$ 0.7, $\gamma=$ 1, $\sigma=$ 1

• Summary statistic: autocorrelation time

Figure: Realization of an ARMA of lenght T = 10.000 < 28 / 33F. Maire (UCD)

Influence of ϵ on α estimate

Figure: M–H top left & Approximated Bayesian Inference bottom (five different ϵ)

F. Maire (UCD)

イロト イポト イヨト イヨト

Influence of ϵ on γ estimate

Figure: M–H top row Approxinated Bayesian Inference bottom (three different ϵ)

F. Maire (UCD)

< □ > < 同 > < 回 > < 回 > < 回 >

Optimal behaviour

- Same kind of trend of β estimate
- \blacksquare For a fixed choice of summary statistics, there seems to exist an optimal ϵ
- It is not that surprising, indeed
 - $\epsilon \gg 1 \Rightarrow$ the choice of subset is not discriminant enough
 - $\epsilon \ll 1 \Rightarrow$ in contrary we have

$$\tilde{\pi}_{n,\epsilon}(\theta \mid Y_{1:N}) \to \tilde{\pi}(\theta \mid U^{\star})$$

so a proper mixture lies in-between...

Guidelines: if we trust S_n , then ϵ can be arbitrary low

イロト イヨト イヨト ・

A last example in high dimension

Reconstruction of template images from a handwritten digits data set. The parameter α we estimate has dimension d = 256, we have N = 10.000 observations each of size 15×15 . Here n = 100 and S_n the mixture index.

Figure: Distance from true templates: blue M–H and black Approximates Bayesian Inference

- 4 回 ト 4 ヨ ト 4 ヨ ト

Perspectives

- Our approach targets a proxy of the true posterior which, provided a decent choice of summary statistics, achieves satisfactorily Bayesian inference at a fixed computational time
- Bardenet et al. & Korratikara don't know precisely the distribution they target...
- Theoretical analysis of the algorithm is difficult since

$$\tilde{\pi}_{n,\epsilon}(\theta \mid Y_{1:N}) = \sum_{U \in \mathcal{U}_n} \tilde{\pi}(\theta \mid Y_U) \nu_{n,\epsilon}(U)$$

is intractable...

Further...

- Compare with Bardenet et. al simulations
- Search for the Intertwined Markov chain kernel...

F. Maire (UCD)

ヘロト 人間ト ヘヨト ヘヨト