Approximated Bayesian Inference and Applications to Large Data Sets

Florian Maire, UCD

joint work with: Nial Friel \& Pierre Alquier

Working Group on Statistical Learning, 23th of September 2014

Outlines

1 Motivations \& main Problematic

2 Some recent Approaches

3 Approximated Bayesian Inference

Outlines

1 Motivations \& main Problematic

2 Some recent Approaches

3 Approximated Bayesian Inference

Bayesian inference at large

■ Modelling \& Data Analysis using Bayesian methods :
$\left\{Y_{1}, Y_{2}, \ldots, Y_{N}\right\}$
Data

- Physical measurements,
- Experimentation results,
- Surveys, etc...

Model selection: Likelihood f_{θ}

Model fitting:
Post. Distribution θ

■ Robustness and simplicity are attracting for a wide range of people / domains

Estimation of the parameter

- The data are random var. on (Y, \mathcal{Y}) (typ. $\mathrm{Y} \subseteq \mathbb{R}^{p}$)
- The parameter θ is (regarded as) random var. on (Θ, ϑ) (typ. $\left.\Theta \subseteq \mathbb{R}^{d}\right)$
- Given:
(i) a likelihood model $f_{\theta} \equiv f(\cdot \mid \theta)$ on $(\mathrm{Y}, \mathcal{Y})$,
(ii) a prior dist. p for θ on (Θ, ϑ)
- define the posterior distribution of θ given $Y_{1: N}=\left(Y_{1}, \ldots, Y_{N}\right) \in \mathrm{Y}^{N}$

$$
\pi\left(\theta \mid Y_{1: N}\right) \propto f\left(Y_{1: N} \mid \theta\right) p(\theta)
$$

- our primary objective is to gain knowledge of π, (we assume likelihood model and prior known and fixed...)

Markov chain Monte Carlo: the black box!!

- Seminal papers late 80 's/early 90 's ${ }^{1}$ popularised the use of Markov chains targeting π to explore the state space Θ
- The Metropolis-Hastings ($\mathrm{M}-\mathrm{H}$) sampler being the most straightforward black box
$■$ Start from some initial state $\theta_{0} \in \Theta$. At step k :
(i) Propose a move $\tilde{\theta} \sim Q\left(\theta_{k}, \cdot\right)$
(ii) Set θ_{k+1} as the next state of the chain if event E_{k} is realized:

$$
E_{k}=\left\{U \leq \frac{f\left(\tilde{\theta} \mid Y_{1: N}\right) p(\tilde{\theta}) Q\left(\tilde{\theta}, \theta_{k}\right)}{f\left(\theta_{k} \mid Y_{1: N}\right) p\left(\theta_{k}\right) Q\left(\theta_{k}, \tilde{\theta}\right)}, \quad U \sim \operatorname{Uni}(0,1)\right\}
$$

What if N becomes larger and larger?? (e.g $N>10^{6}$)

The N case

- A likelihood function evaluation has a complexity in $\mathcal{O}(N)$
- M-H (or other MCMC's) \& optimization methods are severely hampered by a large N
■ When comparing MCMC algorithms
(i) Autocorrelation
(ii) Asymptotic Variance
(iii) Time of transition
- From this perspective, one can expect $\mathrm{M}-\mathrm{H}$ to be badly ranked!
- Example: for a likelihood function

$$
f(\cdot \mid \theta)=0.8 \mathcal{N}(0.3,0.8)+0.2 \mathcal{N}(4,1)
$$

and i.i.d. data

N	1.000	10.000	100.000	10^{6}	10^{7}
M-H trans. CPU Time	0.016	0.151	1.53	15.40	151.87

Main Problematic

How to rescue the traditional Bayesian analysis methods
(i) from being overwhelmed by N,
(ii) while still preserving the black box thing?

Outlines

11 Motivations \& main Problematic

2 Some recent Approaches

3 Approximated Bayesian Inference

Profusion of Research on this topic over the last years

- Exact Methods:
- Using unbiased estimate of $f\left(\theta \mid Y_{1 ; N}\right)$ for all $\theta \in \Theta$
(Pseudo-Marginal literature, Andrieu \& Vihola 2012, Doucet et al 2012)
- A sub-optimal $\mathrm{M}-\mathrm{H}$ transition kernel

Accelerating M-H algorithms: Delayed acceptance with prefetching, Banterle et al, 2014

- An auxiliary variable MCMC, under strong assumptions

FireFly Monte Carlo: Exact MCMC with subsets of data, MacLaurin et al, 2014

- Approximated Methods with error control
- A proxy of the M-H kernel with complexity $\leq \mathcal{O}(N)$

Austerity in MCMC land: Cutting the M-H budget, Korattikara et al, 2013
Towards scaling up MCMC: an adaptive subsampling approach, Bardenet et al, 2014

And also at UCD!

■ Connected with other Research activities at UCD

- Bayesian inference in large networks
- Aidan Boland: Noisy M-H / Application to the Ising model
- Lampros Bouranis: Composite Likelihood Inference / Application to Exponential Random Graph model
- and probably others!

Korattikara et al. / Bardenet et al.

Roughly share the same idea:
■ Rewrite the acceptance step of $\mathrm{M}-\mathrm{H}$ as the realization of the event

$$
E_{k}=\left\{\frac{1}{N} \sum_{k=1}^{N} \log \frac{f\left(Y_{k} \mid \tilde{\theta}\right)}{f\left(Y_{k} \mid \theta_{k}\right)} \geq \frac{1}{N} \log U \frac{p(\tilde{\theta}) Q\left(\tilde{\theta}, \theta_{k}\right)}{p\left(\theta_{k}\right) Q\left(\theta_{k}, \tilde{\theta}\right)}, \quad U \sim \operatorname{Uni}(0,1)\right\}
$$

■ Draw wo replacement, sub batch of data from the data set (successively) up until the event E_{ℓ} is realized:

$$
\tilde{E}_{k, \ell}=\left\{\left|\frac{1}{n_{\ell}} \sum_{k=1}^{n_{\ell}} \log \frac{f\left(Y_{u_{k}} \mid \tilde{\theta}\right)}{f\left(Y_{u_{k}} \mid \theta_{k}\right)}-\psi\left(\theta_{k}, \tilde{\theta}, U\right)\right|>\eta_{\ell}\right\}
$$

- The threshold η_{ℓ} is defined so that

$$
\mathbb{P}\left[E_{k}=\tilde{E}_{k, \ell}\right] \geq \epsilon
$$

So why should we keep on asking questions?!

Three main reasons:
■ As the Markov chain gets closer to equilibrium $n_{\ell} \rightarrow N$ i.e all data are used

■ Computational gains are highly model specific:

Figure: Two different classification tasks (Covtype Dataset (I) and a Synthetic 2D binary decision (r) in Bardenet et al.)

■ only applicable for independent data

Our Motivations

■ Design a new MCMC approach so that, by construction, each transition's complexity is deterministic in $\mathcal{O}(n), n \ll N$
■ Do not restrict to i.i.d. data

- Markov models,
- Time series,
- Networks...

■ While all the mentioned approaches have stand by the standard posterior distribution $\pi\left(\cdot \mid Y_{1: N}\right)$, we rather investigate the feasibility / efficiency to learn from a changing subset data of size $n \ll N$

- We don't consider a pre-processing data reduction step (ACP, clustering, ...) as we want a method as simple as it can gets, (black-box)

Outlines

11 Motivations \& main Problematic

2 Some recent Approaches

3 Approximated Bayesian Inference

Learning from a proxy of π

- We fix $n \in \mathbb{N}, n \ll N$
- Let \mathcal{U}_{n} be the set of all possible integer combinations such that:

$$
\mathcal{U}_{n}=\left\{U=\left(U_{1}, \ldots, U_{n}\right) \in[1, N]^{n}, \quad \forall(i, j) \in[1, n], U_{i} \neq U_{j}\right\}
$$

- The question we address is twofold:
(i) Does it exist a subset $\mathcal{U}_{n}^{\star} \subseteq \mathcal{U}_{n}$ s.t. for $U \in \mathcal{U}_{n}^{\star}, \quad \pi\left(\theta \mid Y_{k}, k \in U\right):=\pi\left(\theta \mid Y_{U}\right) \approx \pi\left(\theta \mid Y_{1: N}\right)$
(ii) How can we find such \mathcal{U}_{n}^{\star} ?

Representativeness of a subset of data

We introduce a Summary Statistics mapping, projecting a batch of data $\left\{Y_{U}, U \in \mathcal{U}_{n}\right\}$ onto a space of smaller dimension $\mathcal{S} \subseteq \mathbb{R}^{m}$

$$
S_{n}: \mathcal{U}_{n} \rightarrow \mathcal{S}
$$

Define the probability measure $\nu_{n, \epsilon}$ on the discrete state space $\left(\mathcal{U}_{n}, \mathscr{U}_{n}\right)$

$$
\forall U \in \mathcal{U}_{n}, \quad \nu_{n, \epsilon}(U)=\frac{\Phi(\|S(U)-s\| / \epsilon)}{\sum_{V \in \mathcal{U}_{n}} \Phi(\|S(V)-s\| / \epsilon)}
$$

where:

- $\Phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a kernel function
- $\epsilon>0$ is a bandwidth attached to Φ
- $s=S_{N}(\{1, \ldots, N\})$ the summary statistic vector of the full data set

Heuristic

The intuition is that for all $(U, V) \in \mathcal{U}_{n}^{2}$

$$
\begin{equation*}
\nu_{n, \epsilon}(U)>\nu_{n, \epsilon}(V) \sim d\left(\pi ; \tilde{\pi}\left(\cdot \mid Y_{U}\right)\right) \leq d\left(\pi ; \tilde{\pi}\left(\cdot \mid Y_{V}\right)\right) \tag{1}
\end{equation*}
$$

for some distance measure on the set of proba on (Θ, ϑ).

- (1) requires a reasonable choice of S_{n} to be meaningful
- Connection with ABC (Approximated Bayesian Computation)

ABC	Subset Inf.
$\theta \sim Q$	$U \sim R$
$\tilde{Y} \sim f(\cdot \mid \theta)$	$\theta \sim \pi\left(\cdot \mid Y_{U}\right)$
Accept θ with probability	
$\nu_{N, \epsilon}(\tilde{Y})$	$\nu_{n, \epsilon}(U)$

■ Take advantage of ABC literature to design relevant S_{n}

The case of curved exponential family models

■ Consider i.i.d. observations from some exponential model $Y_{k} \sim f(\cdot \mid \theta)$, where

$$
f(y \mid \theta)=\exp \langle h(\theta), S(y)\rangle / \int_{\mathrm{Y}} \exp \left\langle h(\theta), S\left(y^{\prime}\right)\right\rangle \mathrm{d} y^{\prime}
$$

■ Here, the choice of Summary Statistics in our approach is naturally provided by the Sufficient Statistics of the exponential model

- In this special case, we show that given $U \in \mathcal{U}_{n}$

$$
\begin{equation*}
\mathrm{KL}\left(\pi \| \tilde{\pi}\left(\cdot \mid Y_{U}\right)\right) \leq \Psi\left(n, N, Y_{1: N}, p\right)+B(U) \tag{2}
\end{equation*}
$$

where $B: \mathcal{U}_{n} \rightarrow \mathbb{R}^{+}$such that for all $U \in \mathcal{U}_{n}$

$$
B(U)=0 \Longleftrightarrow \frac{1}{N} \sum_{k=1}^{N} S\left(Y_{k}\right)=\frac{1}{n} \sum_{k \in U} S\left(Y_{k}\right)
$$

Regarding U as a missing parameter of the model

- These two arguments give credit to the intuition that "some subsets are better than others"
- Issues:
- \mathcal{U}_{n}^{\star} is unlikely to be restricted to a single element (esp. as $d \nearrow$)
- and even in such a case, wouldn't it be more interesting to account for a collection of good subset
■ A collection of good subsets may act somehow complementarily to track π
■ Define the proxy of the target as

$$
\tilde{\pi}_{n, \epsilon}\left(\theta \mid Y_{1: N}\right)=\sum_{U \in \mathcal{U}_{n}} \tilde{\pi}\left(\theta \mid Y_{U}\right) \nu_{n, \epsilon}(U)
$$

yielding a mixture model with $\binom{n}{k}$ components...

First example: Probit model-1

Sample $\left(Y_{1}, \ldots, Y_{N}\right) \in(\{0\},\{1\})^{N}$, independently from the model

$$
\text { (i) } X_{k} \sim \mathcal{N}(\mu, 1), \quad \text { (ii) } Y_{k}=\mathbb{1}_{\left\{X_{k}>0\right\}}
$$

Can we estimate $\mu \in \mathbb{R}$ from $\tilde{\pi}_{n, \epsilon}$ rather than from π ?
■ Settings: $N=1000, n=100, \epsilon=1, S_{n}(U)=\frac{1}{n} \sum_{k \in U} Y_{k}$
■ In this toy example, the likelihood evaluation is NOT in $\mathcal{O}(N)$ and the exact posterior writes:

$$
\pi\left(\theta \mid Y_{1: N}\right) \propto p(\theta)(1-\alpha(\theta))^{N}\left(\frac{\alpha(\theta)}{1-\alpha(\theta)}\right)^{\sum_{k=1}^{N} Y_{k}}
$$

■ $\pi\left(\cdot \mid Y_{1: N}\right)$ can be explored through standard $\mathrm{M}-\mathrm{H}$

- Similarly, given $U \in \mathcal{U}_{n}, \tilde{\pi}\left(\cdot \mid Y_{U}\right)$ can be estimated by standard $\mathrm{M}-\mathrm{H}$

First example: Probit model-2

Figure: Density estimation $-S_{n}\left(U_{1}\right)=0.71, S_{n}\left(U_{2}\right)=0.77, S_{n}\left(U_{3}\right)=0.84, S_{N}=0.843$

- At first sight, $\tilde{\pi}_{n, \epsilon}$ remains far from $\pi \ldots$

■ However, our main interest is to approximate the expectation

$$
\int_{\Theta} H(\theta) \pi\left(\mathrm{d} \theta \mid Y_{1: N}\right) \text { by } \int_{\Theta} H(\theta) \tilde{\pi}_{n, \epsilon}\left(\mathrm{~d} \theta \mid Y_{1: N}\right)
$$

First example: Probit model-3

First example: Probit model-4

■ Variance of the TCL estimate

$$
\sigma_{L}^{2}=\frac{1}{L} \operatorname{Var}\left(\sum_{k=1}^{L} \mu_{k}\right)
$$

$\sigma_{L}^{2}=0.0105$ for $\pi, \sigma_{L}^{2}=0.0305$ for $\tilde{\pi}_{n, \epsilon}$ for $L=10.000$
■ but when we "time normalize":

A general approach

- In general, sampling from the mixture

$$
\tilde{\pi}_{n, \epsilon}\left(\theta \mid Y_{1: N}\right)=\sum_{U \in \mathcal{U}_{n}} \tilde{\pi}\left(\theta \mid Y_{U}\right) \nu_{n, \epsilon}(U)
$$

is not feasible ($N \gg n$, model more complex than the Probit example...)
■ We propose an MCMC algorithm on the extended state space $\left(\Theta \times \mathcal{U}_{n}, \vartheta \otimes \mathscr{U}_{n}\right)$ with target distribution

$$
\tilde{\pi}_{n, \epsilon}\left(\theta, U \mid Y_{1: N}\right)=\tilde{\pi}\left(\theta \mid Y_{U}\right) \nu_{n, \epsilon}(U)
$$

- The Markov chain $\left\{\left(\theta_{k}, U_{k}\right), k \in \mathbb{N}\right\}$ will marginally target $\tilde{\pi}_{n, \epsilon}\left(\cdot \mid Y_{1: N}\right)$

The ideal Markov chain

The desired scheme of the chain would be as follow:

Figure: Intertwined structure of the desired Markov chain

To avoid getting stuck on some optimal block of data:
(i) make two distinct decisions for a move on Θ and on \mathcal{U}_{n}
(ii) U_{k+1} should depend only on U_{k} for optimal mixing mimicking independence sampler (if $\nu_{n, \epsilon}$ could be drawn from!)

The Markov chain we actually use...

(ii) accept wp $\alpha_{2}\left(\theta_{k+1}, U_{k+1} ; U^{\prime}\right)$

Figure: A Markov chain with two independent decisions

We haven't been able yet to find a proper way to make the marginal chain $\left\{U_{k}, k \in \mathbb{N}\right\}$ independent of $\left\{\theta_{k}, k \in \mathbb{N}\right\}$

ARMA model

Observation $\left\{Y_{t}, t \in \mathbb{N}\right\}$

$$
Y_{t+1}=\alpha Y_{t}+\beta Z_{t}+Z_{t+1}+\gamma
$$

where

- $Z_{t+1} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- $\alpha=0.5, \beta=0.7, \gamma=1, \sigma=1$
- Summary statistic: autocorrelation time

Figure: Realization of an ARMA of lenght $T=10.000$

Influence of ϵ on α estimate

Figure: M-H top left \& Approxinated Bayesian Inference bottom (five different ϵ)

Influence of ϵ on γ estimate

Figure: M-H top row Approxinated Bayesian Inference bottom (three different ϵ)

Optimal behaviour

- Same kind of trend of β estimate

■ For a fixed choice of summary statistics, there seems to exist an optimal ϵ

It is not that surprising, indeed
■ $\epsilon \gg 1 \Rightarrow$ the choice of subset is not discriminant enough

- $\epsilon \ll 1 \Rightarrow$ in contrary we have

$$
\tilde{\pi}_{n, \epsilon}\left(\theta \mid Y_{1: N}\right) \rightarrow \tilde{\pi}\left(\theta \mid U^{\star}\right)
$$

- so a proper mixture lies in-between...

Guidelines: if we trust S_{n}, then ϵ can be arbitrary low

A last example in high dimension

Reconstruction of template images from a handwritten digits data set. The parameter α we estimate has dimension $d=256$, we have $N=10.000$ observations each of size 15×15. Here $n=100$ and S_{n} the mixture index.

Figure: Distance from true templates: blue $\mathrm{M}-\mathrm{H}$ and black Approximates Bayesian Inference

Perspectives

- Our approach targets a proxy of the true posterior which, provided a decent choice of summary statistics, achieves satisfactorily Bayesian inference at a fixed computational time
- Bardenet et al. \& Korratikara don't know precisely the distribution they target...
- Theoretical analysis of the algorithm is difficult since

$$
\tilde{\pi}_{n, \epsilon}\left(\theta \mid Y_{1: N}\right)=\sum_{U \in \mathcal{U}_{n}} \tilde{\pi}\left(\theta \mid Y_{U}\right) \nu_{n, \epsilon}(U)
$$

is intractable...
Further...

- Compare with Bardenet et. al simulations
- Search for the Intertwined Markov chain kernel...

