Adaptive Incremental Mixture MCMC

Florian Maire, UCD & Insight

joint work with: Nial Friel (UCD & Insight) Adrian Raftery (University of Washington) Antonietta Mira (University of Lugano)

Trinity Statistics Seminar, 21th of November 2014

Outlines

1 Context & Motivations

- 2 Some elements of related work
- 3 Adaptive Incremental Mixture MCMC
- Comparison with some other methods
 Banana shape target
 - Ridge like target

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

General context

Let π be a probability distribution defined on (X, \mathcal{X}) , $X \subseteq \mathbb{R}^d$

```
<u>Aim</u>: getting samples (X_1, \ldots, X_n) \sim \pi
```

to: estimate any expectation $\mathbb{E}_{\pi}[h(X)]$

Given that π might be:

- complicated not belonging to usual families
- high-dimensional Bayesian inference with $X \equiv \theta$, $d \gg 1$
- multi-modal clustering problems

```
but we assume that \pi is known (possibly up to a constant)...
```

. . . .

Terminology

Two main universal approaches sharing a common philosophy

Particle based methods A set of particles sampled from an instrumental density:

$$(X_1,\ldots,X_n)\sim_{i.i.d.} Q$$

weighted by an importance function

$$W_k \propto W(X_k) = rac{\pi(X_k)}{Q(X_k)}$$

concern: weight degeneration

Markov chain based methods A Markov chain $\{X_k, k \in \mathbb{N}\}$ with proposal

$$\tilde{X} \sim P(X_k, \cdot)$$

accepted / rejected with probability

$$lpha(X_k, ilde X) = 1 \wedge rac{\pi(ilde X) P(ilde X, X_k)}{\pi(X_k) P(X_k, ilde X)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|三 ◇◇◇

concern: bad mixing

Asymptotic estimate

To be useful, these methods must come with asymptotic guarantees *e.g* CLT:

$$\sqrt{n}\left(\hat{\mu}_h(X_1,\ldots,X_n)-\mathbb{E}_{\pi}\left[h(X)\right]\right)\stackrel{P}{\to}\mathcal{N}(0,\hat{\sigma}_h^2(X_1,\ldots,X_n))$$

Particle based methods

Markov chain based methods

$$\hat{\mu}_{h}(X_{1},...,X_{n}) = \frac{\sum_{k=1}^{n} W(X_{k})h(X_{k})}{\sum_{k=1}^{n} W(X_{k})} \qquad \hat{\mu}_{h}(X_{1},...$$

$$h(X_1,\ldots,X_n)=\frac{1}{n}\sum_{k=1}^n h(X_k)$$

n

and the variance write:

$$\hat{\sigma}_h^2(X_1,\ldots,X_n) = \\ \mathbb{E}_{\pi} \left[W(X)(h(X) - \mathbb{E}_{\pi} [h(X)])^2 \right]$$

$$\hat{\sigma}_{h}^{2}(X_{1},\ldots,X_{n}) = \operatorname{Var}_{\pi}[h(X)] \left(1 + 2\sum_{k=1}^{\infty} \rho_{k}\right)$$

Independence sampler: an "hybrid" case

A Markov chain $\{X_k, k \in \mathbb{N}\}$ with proposal distribution

$$ilde{X} \sim Q$$
 (independent of X_k !)

accepted / rejected w.p.

$$lpha(X_k, ilde{X}) = 1 \wedge rac{\pi(ilde{X}) \mathcal{Q}(X_k)}{\pi(X_k) \mathcal{Q}(ilde{X})} = 1 \wedge rac{\mathcal{W}(ilde{X})}{\mathcal{W}(X_k)}$$

 \Rightarrow Apparently of limited interest as we lose the local exploration offered by the markovian proposal...

<u>But</u>, if ever $Q \approx \pi$, \tilde{X} will be accepted w.p. $\rightarrow 1$ $\implies \text{Cov}(h(X_k), h(X_{k+1})) \rightarrow 0 (X_k \perp X_{k+1}) \implies \hat{\sigma}_h^2(X_1, \dots, X_n) \rightarrow \text{Var}_{\pi}[h(X)]$

Outlines

1 Context & Motivations

2 Some elements of related work

3 Adaptive Incremental Mixture MCMC

Comparison with some other methodsBanana shape target

Ridge like target

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

How to get $Q \approx \pi$?

Adaptive algorithms:

- Adaptive Importance sampling: AMIS, Adaptive Multiple Importance Sampling (Cornuet et al, 2012), IMIS, Incremental Mixture of Importance Sampling (Raftery and Le Bao, 2010), ...
- Adaptive Markov chain Monte Carlo: Adaptive Proposal (Haario et al, 1999), Adaptive Metropolis (Haario et al, 2001), Delayed Rejection Adaptive Metropolis (Haario et al, 2006), ...

<u>Idea</u>: use the knowledge of the past particles / states to define a sequence of instrumental kernels $\{Q_k, k \in \mathbb{N}\}$ such that $Q_k \to \pi$...

Bad aspect: Adaptive MCMC methods lose most of the *nice* theory that MCMC rely on

 \Rightarrow new arguments required to prove stationarity, reversibility, ergodicity...

Adaptive MCMC

- Most frequent approach:
 - the proposal distribution Q_k belongs to a parameterized family:

$$Q_k \equiv Q_{\theta_k}, \qquad (heta_k \in \Theta \subseteq \mathbb{R}^m)$$

■ samples of the chain are recursively used to build a sequence of parameter $\{\hat{\theta}_k, k \in \mathbb{N}\}$ optimizing a criterion (acceptance rate, moment matching with π , Kullback-Leibler minimization w.r.t. π ...)

 \Rightarrow issue: needs some *apriori* knowledge of π to chose a reasonable Q_{θ} & constrain a bit the adaption

- Some non-parametric approaches have also been proposed
 - \blacksquare Interpolation of a set of support point to match π
- \Rightarrow issue: seems to struggle in dimension higher than 1

Adaptive IS: Incremental Mixture of Importance Sampling, Raftery and Le Bao, 2010–motivations

IMIS aims at building a collection of Gaussian kernels $\{\phi_1, \ldots, \phi_m\}$ s.t.

$$R_m = (1/m) \sum_{\ell=1}^m \phi_\ell pprox \pi$$

- A particle X_k with an high importance weight W_k highlights a region of the support lacking of particles $(W_k = W(X_k) / \sum_{j=1}^n W(X_j))$
- By construction, IMIS recursively populates with new batch of particles these regions
- This is achieved by specifying a Gaussian distribution φ_m covering this part of the support (and then populating by sampling from φ_m)

IMIS – initiation

IMIS starts with a *naive* / *defensive* / *flat* distribution Q, very uninformative w.r.t. π ... First steps:

(i) samples $(X_1, \ldots, X_{N_0}) \sim Q$ (an instrumental kernel) (ii) set $I = \arg \max_{j \in \{1, \ldots, N_0\}} W_j$, where W_j is the *j*-th particle IS weight (iii) set $\phi_1 = \mathcal{N}(\mu_1, \Sigma_1)$ where

$$\mu_1 = X_I, \qquad \Sigma_1 = \frac{1}{|\mathfrak{N}(X_I)| - 1} \sum_{x \in \mathfrak{N}(X_I)} (x - \mu_1) (x - \mu_1)^{\mathsf{T}}$$

 $\mathfrak{N}(X_I)$ denoting a neighborhood of X_I

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

IMIS – key point

The key point is to resample N new particles through

$$(X_{N_0+1},\ldots,X_{N_0+N})\sim\phi_1$$

and to regard the $N_0 + N$ particles $\{X_1, \ldots, X_{N_0+N}\}$ as being iid realizations of the proposal mixture

$$Q_1 = (1/2)Q + (1/2)\phi_1$$

the following reweighting step for all $j \in \{1, \ldots, N_0 + N\}$

$$W_1(X_j) \propto rac{\pi(X_j)}{\omega_1 Q(X_j) + (1-\omega_1)\phi_1(X_j)}, \qquad \omega_k = rac{N_0}{N_0 + kN_j}$$

keeps the weighted particles target π .

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

IMIS – iterations

At iteration k, we have the particles $\{X_1, \ldots, X_{(k-1)N+N_0}\}$ and the collection of Gaussian kernels $\{\phi_1, \ldots, \phi_k\}$

(i) simulate N new particles $\{X_{(k-1)N+N_0+1}, \ldots, X_{kN+N_0}\} \sim \phi_k$ (ii) reweight all the particles for all $j \in \{1, \ldots, kN + N_0\}$

$$W_k(X_j) \propto rac{\pi(X_j)}{N_0 Q(X_j) + N\left(\phi_1(X_j) + \ldots + \phi_k(X_j)\right)}$$

(iii) get the next Gaussian kernel $\phi_{k+1} = \mathcal{N}(\mu_{k+1}, \Sigma_{k+1})$ where $I = \arg \max_{j \in \{1, \dots, kN+N_0\}} W_k(X_j)$

$$\mu_{k+1} = X_l, \qquad \Sigma_{k+1} = \frac{1}{|\mathfrak{N}(X_l)| - 1} \sum_{x \in \mathfrak{N}(X_l)} (x - \mu_{k+1}) (x - \mu_{k+1})^{\mathsf{T}}$$

 $\mathfrak{N}(X_I)$ denoting a neighborhood of X_I

F. Maire (UCD)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|三 ◇◇◇

Perspectives

- IMIS is "Fully adaptive" in a sense that it follows the generation of particles (limited apriori knowledge required)
- Main issue: an ever increasing set of particles X_1, \ldots, X_{kN+N_0}
- when $k \gg 1$ the reweighting step starts to be prohibitively slow...
- (In practice, IMIS is combined with an optimization step which maps the state space beforehand – this fastens convergence and a reasonable limited number of iterations is then achievable)

Our question:

• Is it possible to derive an "MCMC" equivalent to the IMIS Methodology?

Motivation

• the sequential nature of the chain well suited to a long exploration

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

Outlines

1 Context & Motivations

2 Some elements of related work

3 Adaptive Incremental Mixture MCMC

- Comparison with some other methodsBanana shape target
 - Ridge like target

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

Incremental Mixture MCMC: unfolding IMIS

• A sequence of random variable $\{X_n, n \in \mathbb{N}\}$

$$\begin{cases} X_0 \sim Q \\ X_{n+1} \sim K_n(\cdot) \end{cases}$$
(1)

where K_n is a M–H kernel with independent proposal dist.

$$Q_n = \omega_n Q + (1 - \omega_n) rac{1}{m_n} \sum_{\ell=1}^{m_n} \phi_\ell$$

and acceptance $lpha_n(X_n, ilde{X}) = 1 \wedge rac{W_n(ilde{X})}{W_n(X_n)}$

is meant to emulate the population {X_n, n ∈ ℕ} (obtained after k generations of IMIS),

$$(X_1,\ldots,X_n)\sim \omega_k Q+(1-\omega_k)\frac{1}{k}\sum_{\ell=1}^k\phi_\ell,\qquad (n=kN+N_0)$$

weighted by the function $W_k(x)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のなの

Building on the analogy

- 1 iteration of IMIS \Rightarrow 1 new component ϕ_ℓ
- But, we want 1 iteration IMMCMC eq 1 new component $\phi_{\ell}!$
- for a better match, a new kernel should be designed after N iterations

<u>But</u>

Adding a component every N iteration, <u>deterministically</u> sounds odd:

 \Rightarrow What if X_N lies in an area well supported by Q_N ?

- We rather suggest letting the incremental kernel develop stochastically:
- At iteration *n*, increase the mixture if

$$\{W_n(\tilde{X}) > W_n^*\}, \qquad \tilde{X} \sim Q_n$$

 \Rightarrow "add a component when it worths it"

F. Maire (UCD)

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Main challenge: How to choose W_n^* ?

Two alternatives:

(1) constant $W_n^* = c$

- needs off line calibration
- too much dependency on the sample path
- instable

(2) bounded in probability by a sequence of parameter $\{\epsilon_n, n \in \mathbb{N}\}$

$$\mathbb{P}_n[\{W_n(\tilde{X}) > W_n^*\}] \leq \epsilon_n$$

- more control
- still how to define a suitable W_n^* achieving the bound in probability?

$$\mathbb{P}_{n}[\{W_{n}(\tilde{X}) > W_{n}^{*}\}] = \int_{X} \mathbb{1}_{\{W_{n}(x) > W_{n}^{*}\}}(x)Q_{n}(\mathrm{d}x)$$
$$\approx R^{-1}\sum_{k=1}^{R} \mathbb{1}_{\{W_{n}(X_{k}) > W^{*}\}}(X_{k}) \quad (2)$$

Example with a challenging target

We consider $X=\mathbb{R}^2$

$$\pi(\mathrm{d} x) = \Phi(f_b(x), \mu, \Sigma) \mathrm{d} x\,,$$

where

- $x \to \Phi(x, \mu, \Sigma)$ is the two-dimensional Gaussian density function with mean μ and covariance matrix Σ
- $f_b: \mathbb{R}^2 \to \mathbb{R}^2$ is the mapping defined by

$$f_b: \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y+bx^2-100b \end{pmatrix}$$

We have used b = 0.1, $\mu = [0, 0]$ and $\Sigma = diag([100, 1])$

Banane shape distribution (or Twisted Gaussian)

 \Rightarrow Simulation

-

• • = • • = •

Samples of the two approaches

Figure: Support (blue), Sample paths (black), Confidence interval (0.5) Incremental Components (green) :

- Constant threshold (left)
- Bounded in proba. (right)

< ∃ > < ∃

Incremental kernel design in simulation - constant threshold

Constant thresholds $W_n^* = c$ (100 independent run of 40,000 it.)

Estimated probability of adding a kernel for 1 run c = 10

3 N K 3 N

Incremental kernel design in simulation - bound in proba

 $\mathbb{P}_n[W_n(X) > W^*] \le 0.005$

Figure: Threshold $W_{m_n}^*$ (left) and probability $\mathbb{P}_n[W_n(\tilde{X}_n) > W_n^*]$ (right)

 much more consistent than using Markov bound
 after n = 40,000 it. m_n = 166 kernels designed, (40,000 × 0.005 = 200)

F. Maire (UCD)

(B)

Incremental kernel design in simulation - bound in proba

Figure: Right: evolution of the number of kernels in the proposal as MCMC progresses (blue) and "theoretic rate" (black) – left: for 100 runs

- \Rightarrow More consistency than the fixed threshold
- \Rightarrow Obviously, we don't want to keep adding kernels infinitely

Simulation with a specific sequence of ϵ_n

A word about convergence of IM–MCMC

Instead of Roberts and Rosenthal assumptions,

- (i) diminishing adaption: transition kernels tend to become closer and closer in probability
- (ii) containment: each transition kernel is a finite time step away from an ϵ -ball centered on the target (relaxation of the simultaneous ergodicity)
- Holden's proof of geometric convergence for adaptive chains with independent proposals, seems more straightforward in our case,

(i) main assumption: a strong Dæblin condition – it exists a function $\gamma_n : Y^n \rightarrow]0,1)$ such that for all $(x, y) \in X^2$

$$\frac{\pi(z)}{Q_n(z)} \leq \frac{1}{\gamma_n(\tilde{y}^n)}$$

where $\tilde{y}^n \in Y^n$ is a history dependent vector. which holds (by construction) for IM-MCMC.

Outlines

- Context & Motivations
- 2 Some elements of related work
- 3 Adaptive Incremental Mixture MCMC
- 4 Comparison with some other methods
 - Banana shape target
 - Ridge like target

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Outlines

1 Context & Motivations

2 Some elements of related work

3 Adaptive Incremental Mixture MCMC

4 Comparison with some other methods
Banana shape target
Ridge like target

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Adaptive Metropolis, AM (Haario, 2001–Bernoulli, 7(2))

A Metropolis algorithm with proposal

$$Q_n(X_n, \cdot) = Q(\cdot) \mathbb{1}_{n \le N_0} + \psi_n(X_n, \cdot) \mathbb{1}_{n > N_0}$$

Q is the "naive" proposal or prior

• ψ_n is a Gaussian with mean X_n and covariance matrix

$$\Sigma_n = s_d \, \Gamma_n + s_d \, \epsilon I_d$$

where $\Gamma_n = \operatorname{cov}(X_1, \ldots, X_{n-1})$, $s_d = (2.4)^2/d$ (*d* is the dimension of the state) and $\epsilon \ll d$ a constant parameter (allowing to have Σ_n positive definite)

Time normalized comparison with IM-MCMC

method	(s_d, ϵ)	acc rate	m _n	Nb Iterations
AM	(2.88, 0.001)	0.10	-	90,000
AM	(0.01, 1)	0.52	-	90,000
IM-MCMC	_	0.52	96	40,000

Table: Estimation over 100 runs

Tail exploration

We want to assess the sampling quality of the tail of $\boldsymbol{\pi}$

Adaptive Metropolis - setup 1

- 3754 states out of 90,000 are such that $X_k^2 \le 40$
- but only 48 unique points
- average waiting time in the tail ≈ 80 iterations!

A B A A B A B

What about ADA IMIS?

• 807 states out of 40,000 are such that $X_k^2 \leq 40$

- and 467 unique points
- lacksim average waiting time in the tail pprox 1.7 iterations!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assessing the sampling efficiency

Kullback Leibler divergence between two measures on (X, X), say (μ , ν):

$$\mathsf{KL}\left(\mu \, \| \,
u
ight) = \mathbb{E}_{\mu}\left[\log\left(rac{\mu(X)}{
u(X)}
ight)
ight]$$

For an observed Markov chain $x_{1:n} \in X^n$, let $\hat{f}_{x_{1:n}}$ be a kernel approximation of the empirical distribution $n^{-1} \sum_{k=1}^n \delta_{x_k}$

$$\begin{aligned} \mathsf{KL}\left(\pi \parallel \hat{f}_{x_{1:n}}\right) &= \int_{\mathsf{X}} \log\left(\frac{\pi(x)}{\hat{f}_{x_{1:n}}(x)}\right) \pi(x) \lambda(\mathrm{d}x) \\ & \sim \widetilde{\mathsf{KL}}\left(\pi \parallel \hat{f}_{x_{1:n}}\right) = \sum_{k=1}^{M} \log\left(\frac{\pi(\bar{x_m})}{\hat{f}_{x_{1:n}}(\bar{x_m})}\right) \pi(\bar{x_m}) \mathrm{d}\lambda \qquad \text{(discretisation)} \end{aligned}$$

KL for the three previous runs

Figure: samples and discretised KL heat map (same scale) for 1 run of each setup

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Hamiltonian Monte Carlo

Figure: 1 run – acc rate HMC: 0.37 (ADAIMIS: 0.51) – time spent in tail HMC: 0.0033 (ADAIMIS: 0.02)

-

イロト イポト イヨト イヨト

Variability over 100 independent runs

account very well for mixing & exploration simultaneously

ADA IMIS performs much better than AM on this example

F. Maire (UCD)

Outlines

1 Context & Motivations

2 Some elements of related work

3 Adaptive Incremental Mixture MCMC

Comparison with some other methodsBanana shape target

Ridge like target

Ridge like target

Comparison IM-MCMC vs IMIS

Ridge-like simulated example in (Raftery et al)

$$\pi(\theta) \propto \underbrace{\mathsf{N}(\mu_i, D_i, \theta)}_{\text{prior}} \underbrace{\mathsf{N}(\mu_o, D_o, g(\theta))}_{\text{likelihood}}$$

 $\mu_i \in \mathbb{R}^6$ and $\mu_o \in \mathbb{R}^4$ - mapping g deterministic.

- \blacksquare Run IMIS until the "expected fraction of unique points in the resample is at least $1-1/e^{\rm "}$
- get the Effective sample size from IMIS

$$\mathsf{ESS}_{IMIS} = \frac{1/\sum_{k=1}^{N} (w_k^2)}{N}$$

where N is the nb of particles when IMIS stops.

Comparison IM-MCMC vs IMIS

 for the same amount of wallclock time run IM MCMC and compare ESS_{IMIS} with

$$\mathsf{ESS}_{IMMCMC} = \frac{N}{1 + 2\sum_{k=1}^{\infty} \rho_k}$$

where N is the nb of iterations of the Markov chain during the given time and ρ_k is the estimated lag k autocorrelation function of the chain.

Effective Sample Size

• IMIS: 46,200 particles (67 generations) and $m_n = 67$ components

$$\text{ESS}_{IMIS} = 0.04$$

• IM-IMIS: 2,500 MCMC iterations and $m_n = 77$ components

component	ESS _{IM-MCMC}			
$ heta_1$	0.11			
θ_2	0.05			
θ_3	0.08			
$ heta_4$	0.03			
θ_5	0.09			
$ heta_6$	0.07			

Here we are...

- the IM-MCMC methodology aims at extending IMIS to a sequential context
- early simulation results are encouraging
- interesting work as it allows to see analogies between particle base method and MCMC
- Other interesting things to derive
 - how to compare properly particle based methods and MCMC
 - refine convergence rate by using the non-ordinary IM-MCMC transition...

Thank you for your attention!

IM-MCMC with "bad proposal"

Figure: sample path of one Markov chain with "bad" initial proposal displayed by the thick ellipse (upper right hand side) – note the sequence of kernels created by IM-MCMC in rainbow style

F. Maire (UCD)

IM-MCMC with "bad proposal"-even worst!

Figure: sample path of one Markov chain with "bad" initial proposal displayed by the thick ellipse (upper right hand side) – note the sequence of kernels created by IM-MCMC in rainbow style

F. Maire (UCD)

Function evaluations

IMIS at generation k

- Target evaluation
 - $\tau_{\pi}^{\mathsf{IMIS}}(k) = N_0 + kN$
- Gaussian evaluation

$$au_{\phi}^{\mathsf{IMIS}}(k) = k(N_0 + (k-1)N)$$

IM-MCMC at iteration nTarget evaluation

$$au_{\pi}^{\mathsf{IM-MCMC}}(n) = n$$

Gaussian evaluation

$$au_{\phi}^{\mathsf{IM}\operatorname{-MCMC}}(n) = \sum_{i=1}^{n} (m_i + 1) + m_n$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Gaussian function evaluation for IMIS

generation	$\phi_0 = Q$	ϕ_1	ϕ_2	ϕ_3		ϕ_{k-1}
1	N ₀	-	-	-		-
2	N	$N_0 + N$	-	-		-
3	N	N	$N_0 + 2N$	_		-
4	Ν	Ν	N	$N_0 + 3N$		-
	:		:		· ·	:
k	Ν	Ν	N	N		$N_0 + (k-1)N$

Table: Gaussian pdf evaluation for each component of the incremental kernel per generation

At generation k:

- ϕ_{k-1} has just been created w.p. 1 thus the previous population consisting of $N_0 + (k-2)N$ particles needs to be evaluated for ϕ_{k-1}
- in addition to that, the N new particles need to be evaluated for ϕ_0,\ldots,ϕ_{k-1}
- the nb of Gaussian pdf eval. since the generation 0 is the sum of all integers in the table (constant over the columns...)

F. Maire (UCD)

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Gaussian function evaluation for IM–MCMC

At iteration n:

- either $m_n = m_{n-1}$, in which case, the proposed new state \hat{X} needs to be evaluated at $\phi_0 = Q, \phi_1, \dots, \phi_{m_n}$, *i.e* $m_n + 1$ Gaussian pdf
- either $m_n = m_{n-1} + 1$ and in addition of the $m_n + 1$ evaluations caused by \tilde{X} , the current state X_n needs to be evaluated at the newly created kernel ϕ_{m_n}

This leaves with

$$au_{\phi}^{\mathsf{IM-MCMC}}(n) = \sum_{i=1}^n (m_i+1) + m_n$$

Gaussian pdf evaluation since starting with X_0

IMIS: 48,600 particles (71 generations) and $m_n = 71$ components

normalisation	time	target	gaussian	function
it. completed n	9,264	51,600	40,367	40,441
samples retained	1,000	20,000	20,000	20,000
m _n	57	117	113	113
θ_1	.11	.15	.14	.15
θ_2	.11	.14	.15	.15
θ_3	.07	.13	.15	.14
$ heta_4$.11	.12	.16	.13
θ_5	.13	.15	.14	.14
$ heta_6$.06	.15	.15	.14

Table: ESS_{IM-MCMC}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □