A Partial Ordering for Inhomogeneous Markov Chains : Motivations and Applications to several MCMC algorithms...

Florian Maire*, UCD

joint work with: Randal Douc (Telecom SudParis, Évry, France) Jimmy Olsson (KTH Institute of Technology, Stockholm, Sweden)

* while at ONERA \& Telecom SudParis

Working Group on Statistical Learning, 5th of February 2014

Outlines

1 Motivations \& main Problematic

2 A new Theorem for Markov chains comparaison

3 Applications to some MCMC algorithms

Outlines

1 Motivations \& main Problematic

2 A new Theorem for Markov chains comparaison

3 Applications to some MCMC algorithms

A toy example to start

Consider the joint probability distribution whose density function is defined on $\left(\{1, \ldots, 4\}, \mathbb{R}^{2}\right)$ by:

$$
\pi(i, x)=\frac{1}{4} g_{i}(x),
$$

where $\left\{g_{i}, i \in(1,4)\right\}$ is the Gaussian density function with mean

$$
\mu_{1}=\binom{1}{1}, \mu_{2}=\binom{-1}{1}, \mu_{3}=\binom{-1}{-1}, \mu_{4}=\binom{1}{-1}
$$

and covariance matrix $\Sigma=\sigma^{2} \mathrm{Id}_{2}$.

\Rightarrow We want to sample $(I, X) \sim \pi$

 (and imagine no exact sampling is available)
Inefficient Gibbs sampler... (1/2)

Gibbs sampler (1984): transition $\left(I_{n}=i, X_{n}=x\right) \rightarrow\left(I_{n+1}, X_{n+1}\right)$ writes
(i) $X_{n+1} \mid I_{n}=i \sim g_{i}$,
(ii) $I_{n+1}=i^{\prime} \mid X_{n+1}=x^{\prime} \propto g_{i^{\prime}}\left(x^{\prime}\right)$.

Table: Illustration of the Gibbs Markov chain under different σ^{2}

$$
\sigma^{2}=0.1
$$

$\sigma^{2}=0.075$
$\sigma^{2}=0.005$

Inefficient Gibbs sampler... (2/2)

Table: Empirical model transition probability obtained by the Gibbs sampler with different σ

σ^{2}	0.125	0.1	0.075	0.005
$\hat{\mathbb{P}}\left[I_{n+1} \neq I_{n}\right]\left(10^{-6}\right)$	2300	860	85	1.2

- The well known Gibbs trapping state problem:

$$
x \sim g_{i} \Longrightarrow x \text { fits model } i \Longrightarrow \mathbb{P}[i \rightarrow j \neq i \mid x] \ll 1
$$

This problem is all the more important when models are distinct $i . e$ when $\{\pi(\cdot \mid i), i \in(1,4)\}$ are class informative

Another argument

■ Formalism: $Z=(I, X)$ and π defined on (Z, \mathcal{Z}),

- Previous example is a particular case of the more general model where the state space writes

$$
\mathbf{Z}=\left\{i \in \mathbf{I}, \mathbf{X} \in \mathbf{X}^{(i)}\right\}
$$

- A Gibbs sampler cannot simulate a Markov chain on (Z, Z) \Rightarrow the Gibbs scheme would allow samples $\left(i, x \in X^{(j)}\right) \notin Z$,
- From now on, suppose all the parameters live in the same space i.e

$$
Z=\{i \in I, x \in X\}
$$

A more appropriate sampler

- Suppose a mixture of C models i.e $I \in I(I=\{1, \ldots, C\})$,

■ Carlin \& Chib (1995) propose the extended target distribution

$$
\tilde{\pi}\left(i, x^{(1)}, \ldots, x^{(C)}\right)=\pi\left(i, x^{(i)}\right) \prod_{j \neq i} \zeta_{j}\left(x^{(j)}\right)
$$

where $\left\{\zeta_{i}, i \in \mathrm{I}\right\}$ are "samplable" probability distributions refered to as pseudo-priors.

■ Note that:

$$
\int \cdots \int \tilde{\pi}\left(i, \mathrm{~d} x^{(1)}, \ldots, \mathrm{d} x^{(i-1)}, x^{(i)}, \mathrm{d} x^{(i+1)}, \ldots, \mathrm{d} x^{(C)}\right)=\pi\left(i, x^{(i)}\right)
$$

- and thus

$$
\left(I, X^{(1)}, \ldots, X^{(C)}\right) \sim \tilde{\pi} \Longrightarrow\left(I, X^{(I)}\right) \sim \pi
$$

Carlin \& Chib

- The Carlin \& Chib sampler is a Gibbs on the data-augmented state-space $I \times \underbrace{X \times \cdots \times X}_{C}$
- Given $\left(I_{n}, X_{n}^{(1)}, \ldots, X_{n}^{(C)}\right)=\left(i, x^{(1)}, \ldots, x^{(C)}\right)$, the transition writes
(i) $X_{n+1}^{(i)} \sim \pi(\cdot \mid i)$,
(ii) $\forall j \neq i, \quad X_{n+1}^{(j)} \sim \zeta_{j}$,
(iii) draw $I_{n+1}=i^{\prime}$ with proba. $\propto \tilde{\pi}\left(i^{\prime}, X_{n+1}^{(1)}, \ldots, X_{n+1}^{(C)}\right)$.

Table: Marginal sequence $\left\{\left(I_{n}, X_{n}^{\left(I_{n}\right)}\right), n \in \mathbb{N}\right\}$ when $\sigma^{2}=0.005$

Influence of the pseudo-priors

■ We would like to have $\zeta_{i} \approx \pi(\cdot \mid i)$
■ Marginal probabilities of the class after 5000 MCMC iterations

classes		1	2	3	4
Gibbs		0	0	1	0
CC	$\zeta_{j}=g_{j}$	0.26	0.24	0.25	0.25
CC	$\zeta_{j}=\mathcal{N}(0,1)$	0.24	0.27	0.23	0.26
CC	$\zeta_{j}=\mathcal{N}(0,0.2)$	0.44	0.17	0.25	0.14

- Evolution of the empirical variance of $\mathbb{P}[I=1]$ throughout MCMC

Theoretic considerations

Is there any theoretic argument behind the (obvious) link between
(i) the ability of the Markov chain to switch models
(ii) the MCMC asymptotic variance?

Formalizing the ability to switch between models leads to the off-diagonal ordering:

- Let P_{0} and P_{1} two Markov kernels on some general state space (Z, \mathcal{Z})
- P_{1} dominates P_{0} in the off-diagonal sense if $\forall A \in \mathcal{Z}$

$$
P_{1}(z, A \backslash\{z\}) \geq P_{0}(z, A \backslash\{z\}), \quad \pi \text {-a.e. }
$$

(we note $P_{1} \succeq P_{0}$)

Tierney's Theorem

Tierney (1994) Theorem (extending Peskun's (1973)) state that :

Under (A1) and (A2)

- (A1) P_{0} and P_{1} are π-reversible kernels i.e for $i \in\{0,1\}$:

$$
\forall(A, B) \in(\mathcal{Z} \times \mathcal{Z}), \quad \int_{A} \pi(\mathrm{~d} z) P_{i}(z, B)=\int_{B} \pi(\mathrm{~d} z) P_{i}(z, A)
$$

- (A2) $P_{1} \succeq P_{0}$,

Then, for all $f \in \mathcal{L}^{2}(\pi)$

$$
v\left(f, P_{1}\right) \leq v\left(f, P_{0}\right)
$$

where for $i \in\{0,1\}$,

$$
v\left(f, P_{i}\right):=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Var}\left[\sum_{k=1}^{n} f\left(X_{k}^{(i)}\right)\right], \quad X_{k}^{(i)} \sim P_{i}^{(k)}\left(z_{0}, \cdot\right) .
$$

Limitations

■ Some popular kernels may not have feature the off-diagonal ordering

- (A1) (π-reversibility) is a strong assumption ...
- ...and is not verified by either Gibbs or Carlin \& Chib sampler
- To obtain a π-reversible Markov chain, Gibbs sampler (and Carlin \& Chib) should be rewritten as :

$$
\binom{I_{n}=i}{X_{n}=x} \rightarrow\binom{I_{n+1} \sim \pi(\cdot \mid x)}{X_{n+1} \sim \delta_{\{x\}}(\cdot)} \rightarrow\binom{I_{n+2} \sim \delta_{\left\{i^{\prime}\right\}}(\cdot)}{X_{n+2} \sim \pi\left(\cdot \mid i^{\prime}\right)} \rightarrow \cdots
$$

■ that is Inhomogeneous Markov chain

$$
Z_{n} \xrightarrow{P} Z_{n+1} \xrightarrow{Q} Z_{n+2} \xrightarrow{P} Z_{n+3} \xrightarrow{Q} \cdots
$$

which is not in Tierney's Theorem scope.

Question

Is there any way to extend Tierney's Theorem to cover the inhomogeneous Markov chain study?

Tierney's proof essentially relies on
(i) the following expression of the variance:

$$
\frac{1}{n} \operatorname{Var}\left[\sum_{k=1}^{n} f\left(Z_{k}\right)\right]=\|f\|^{2}+\frac{2}{n} \sum_{k=1}^{n}(n-k)\left\langle f, P^{k} f\right\rangle
$$

(ii) a spectral decomposition Theorem for self-adjoint operators:

$$
\forall n \geq 0, \quad\left\langle f, P^{n} f\right\rangle=\int z^{n} \mu_{f, P}(\mathrm{~d} z)
$$

A similar Proof cannot be derived for inhomogeneous chains.

Outlines

11 Motivations \& main Problematic

2 A new Theorem for Markov chains comparaison

3 Applications to some MCMC algorithms

Our Main result

Under (A1') and (A2')

- (A1') for all $i \in\{0,1\}, P_{i}$ and Q_{i} are π-reversible kernels
- (A2') $P_{1} \succeq P_{0}$ and $Q_{1} \succeq Q_{0}$

Then, for all $f \in \mathcal{L}^{2}(\pi)$ such that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\left|\operatorname{Cov}\left(f\left(Z_{0}^{(i)}\right), f\left(Z_{k}^{(i)}\right)\right)\right|+\left|\operatorname{Cov}\left(f\left(Z_{1}^{(i)}\right), f\left(Z_{k+1}^{(i)}\right)\right)\right|\right)<\infty \tag{1}
\end{equation*}
$$

we have

$$
v\left(f, P_{1}, Q_{1}\right) \leq v\left(f, P_{0}, Q_{0}\right)
$$

Sketch of the proof

\Rightarrow Revisiting Tierney's proof without spectral decomposition Theorem
(1) Under assumptions (A1) and (A2) and for f such that (1)

$$
v(f, P)=\|f\|^{2}+2 \sum_{n=0}^{\infty} \underbrace{\operatorname{Cov}\left(f\left(X_{1}\right), f\left(X_{n}\right)\right)}_{\left\langle f, P^{n} f\right\rangle},
$$

(2) Define $\quad \begin{cases}\forall \alpha \in(0,1) & P_{\alpha}=(1-\alpha) P_{0}+\alpha P_{1}, \\ \forall \lambda \in(0,1) & w_{\lambda}\left(f, P_{\alpha}\right)=\sum_{n=1}^{\infty} \lambda^{n}\left\langle f, P_{\alpha}^{n} f\right\rangle,\end{cases}$
(3) We show that $\forall \lambda \in(0,1), \alpha \rightarrow w_{\lambda}\left(f, P_{\alpha}\right)$ is decreasing over $(0,1)$.
(4) Proof completed by a Dominated Convergence Theorem $\lambda \rightarrow 1$:

$$
\left\langle f, P_{1}^{n} f\right\rangle \leq\left\langle f, P_{0}^{n} f\right\rangle
$$

\Rightarrow This proof is compatible with inhomogeneous Markov chain.

A significant Corollary

- Imagine $Z=(X, U)$ where X is the variable of interest and U some auxiliary data
- In many situation the transition kernel K_{i} isn't π-reversible

$$
Z_{n}^{(i)} \xrightarrow{K_{i}} Z_{n+1}^{(i)} \xrightarrow{K_{i}} Z_{n+2}^{(i)} \ldots
$$

and thus $K_{1} \succeq K_{0} \nRightarrow v\left(f, K_{1}\right) \leq v\left(f, K_{0}\right)$ (with Tierney Theorem)

- Possibility to "force" π-reversibility by artificially introducing a freezing step
$\tilde{Z}_{n}=\binom{\tilde{X}_{n}^{(i)}}{\tilde{U}_{n}^{(i)}} \xrightarrow{P_{i}}\binom{\tilde{X}_{n+1}^{(i)}}{\tilde{U}_{n+1}^{(i)}=\tilde{U}_{n}^{(i)}} \xrightarrow{Q_{i}}\binom{\tilde{X}_{n+2}^{(i)}=\tilde{X}_{n+1}^{(i)}}{\tilde{U}_{n+2}^{(i)}} \xrightarrow{P_{i}} \cdots$
- Note that $\left\{\tilde{Z}_{2 n}^{(i)}, n \in \mathbb{N}\right\}=\left\{Z_{n}^{(i)}, n \in \mathbb{N}\right\}$ and our Theorem leads to $v\left(f, K_{1}\right) \leq v\left(f, K_{0}\right)$

Outlines

1 Motivations \& main Problematic

2 A new Theorem for Markov chains comparaison

3 Applications to some MCMC algorithms

The mixture Model problem

Rewriting the Gibbs and the Carlin and Chib samplers:

$$
\begin{aligned}
& P_{\mathrm{G}}\left\{\begin{array}{l}
I_{n}^{(\mathrm{G})} \sim \pi(\cdot \mid x) \\
X_{n}^{(\mathrm{G})} \sim \delta_{x}(\cdot)
\end{array}\right. \\
& Q_{\mathrm{G}}\left\{\begin{array}{l}
I_{n+1}^{(\mathrm{G})} \sim \delta_{i^{\prime}}(\cdot) \\
X_{n+1}^{(\mathrm{G})} \sim \pi\left(\cdot \mid i^{\prime}\right)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
Z_{2 n}^{(i)}=\binom{I_{n}^{(i)}=i}{X_{n}^{(i)}=x} \\
Z_{2 n+1}^{(\mathrm{C})}=\binom{I_{n}^{(\mathrm{C})}=i^{\prime}}{X_{n}^{(\mathrm{C})}=x}
\end{array}
\end{aligned}
$$

(i) P_{CC} is π-reversible, (ii) $Q_{\mathrm{CC}}=Q_{\mathrm{G}}$, (iii) $P_{\mathrm{CC}} \stackrel{?}{\succeq} P_{\mathrm{G}} \Rightarrow v(f, \mathrm{CC}) \leq v(f, \mathrm{G})$.

Pseudo-Marginal Algorithms

Pseudo-Marginal (Andrieu \& Robert, 2009): no exact expression of the target distribution π e.g

$$
\pi(x)=\int \pi(x, \mathrm{~d} u)
$$

for all $\left(x, x^{\prime}\right) \in \mathrm{X}^{2}, \pi(x) / \pi\left(x^{\prime}\right)$ intractable
\Rightarrow Idea: simulate a Markov chain targeting

$$
\tilde{\pi}(\mathrm{d} x, \mathrm{~d} u)=\underbrace{\pi(\mathrm{d} x) w_{u}(x)}_{\hat{\pi}_{u}(\mathrm{~d} x), \text { calculable }} \underbrace{R(x, \mathrm{~d} u)}_{\text {samplable }}
$$

(note that $\int \tilde{\pi}(x, \mathrm{~d} u)=\pi(x)$)
For example, use Importance Sampling estimate:

$$
\hat{\pi}_{u}(x)=\frac{1}{n} \sum_{k=1}^{n} \frac{\pi\left(x, u^{(k)}\right)}{R\left(x, u^{(k)}\right)}, \quad U^{(k)} \stackrel{i . i . d}{\sim} R(x, \cdot) .
$$

Monte Carlo within Metropolis (MCWM)

A Markov chain $\left\{X_{n}, n \in \mathbb{N}\right\}$ on (X, \mathcal{X}) : given $X_{n}=x, X_{n+1}$ is obtained as follows
(i) propose $X^{\prime} \sim K(x, \cdot)$
(ii) simulate aux. var. for both states X_{n} and X^{\prime} : $U \sim R(x, \cdot), U^{\prime} \sim R\left(x^{\prime}, \cdot\right)$
(iii) accept $X_{n+1}=x^{\prime}$ w.p

$$
\hat{\alpha}\left(x, x^{\prime}, u, u^{\prime}\right)=1 \wedge \frac{\hat{\pi}_{u^{\prime}}\left(x^{\prime}\right) K\left(x^{\prime}, x\right)}{\hat{\pi}_{u}(x) K\left(x, x^{\prime}\right)}
$$

MCWM is not π-reversible but targets an approximate of $\pi(x) \ldots$
\Rightarrow noisy algorithm!

Grouped-Independence Metropolis Hastings (GIMH)

A Markov chain $\left\{\left(X_{n}, U_{n}\right), n \in \mathbb{N}\right\}$ targeting $\tilde{\pi}$ such that given $\left(X_{n}, U_{n}\right)=(x, u),\left(X_{n+1}, U_{n+1}\right)$ is obtained as follows
(i) propose $X^{\prime} \sim K(x, \cdot)$
(ii) simulate aux. var. for the state $X^{\prime}: U^{\prime} \sim R\left(x^{\prime}, \cdot\right)$
(iii) accept $\left(X_{n+1}, U_{n+1}\right)=\left(x^{\prime}, u^{\prime}\right)$ w.p

$$
\hat{\alpha}\left((x, u),\left(x^{\prime}, u^{\prime}\right)\right)=1 \wedge \frac{\hat{\pi}_{u^{\prime}}\left(x^{\prime}\right) K\left(x^{\prime}, x\right)}{\hat{\pi}_{u}(x) K\left(x, x^{\prime}\right)}
$$

GIMH is Metropolis-Hastings algorithm $\Rightarrow \tilde{\pi}$-reversible.

Remark

■ MCWM \& GIMH cannot be properly compared with Tierney's Theorem

- They may be rewritten artificially as:

MCWM: $\quad\left(X_{n}^{(M)}\right) \xrightarrow{P_{M}}\binom{X_{n}^{(M)}}{U} \xrightarrow{Q}\left(X_{n+1}^{(M)}\right) \xrightarrow{P_{M}} \cdots$
GIMH: $\quad\binom{X_{n}^{(G)}}{U_{n}^{(G)}} \xrightarrow{P_{G}}\binom{X_{n}^{(G)}}{U_{n}^{(G)}} \xrightarrow{Q}\binom{X_{n+1}^{(G)}}{U_{n+1}^{(G)}} \xrightarrow{P_{G}} \ldots$

A Random-Refreshment Pseudo Marginal algorithm

A Markov chain $\left\{\left(X_{n}, U_{n}\right), n \in \mathbb{N}\right\}$ targeting $\tilde{\pi}$ such that given $\left(X_{n}, U_{n}\right)=(x, u),\left(X_{n+1}, U_{n+1}\right)$ is obtained as follows:
(i) (a) propose a new aux. var. for state $X ; \tilde{U} \sim R(x, \cdot)$
(b) refresh the aux. var. U_{n} by \tilde{U} with a certain probability $\omega_{u, \tilde{u}}$
(ii) propose $X^{\prime} \sim K(x, \cdot)$
(iii) simulate aux. var. for the state $X^{\prime}: U^{\prime} \sim R\left(x^{\prime}, \cdot\right)$
(iv) accept $\left(X_{n+1}, U_{n+1}\right)=\left(x^{\prime}, u^{\prime}\right)$ w.p

$$
\hat{\alpha}\left((x, u),\left(x^{\prime}, u^{\prime}\right)\right)=1 \wedge \frac{\hat{\pi}_{u^{\prime}}\left(x^{\prime}\right) K\left(x^{\prime}, x\right)}{\hat{\pi}_{u}(x) K\left(x, x^{\prime}\right)}
$$

Comparing GIMH \& Random Refreshment

GIMH:

$$
\begin{aligned}
& \text { GIMH: } \quad\binom{X_{n}^{(G)}}{U_{n}^{(G)}} \xrightarrow{P_{G}}\binom{X_{n}^{(G)}}{U_{n}^{(G)}} \xrightarrow{Q}\binom{X_{n+1}^{(G)}}{U_{n+1}^{(G)}} \xrightarrow{P_{G}} \ldots \\
& \text { Random Refreshment: } \quad\binom{X_{n}^{(R)}}{U_{n}^{(R)}} \xrightarrow{P_{R}}\binom{X_{n}^{(R)}}{\tilde{U}} \xrightarrow{Q}\binom{X_{n+1}^{(R)}}{U_{n+1}^{(R)}} \xrightarrow{P_{G}} \ldots
\end{aligned}
$$

Our Theorem holds and show that for any $f \in \mathcal{L}^{2}(\pi)$ verifying (1)

$$
v(f, R) \leq v(f, G)
$$

Perspectives

Our Theorem extends Tierney's and Peskun's works and allows

- to compare inhomogeneous Markov chains (by nature)...

■ and even (non necessarily π-reversible) homogeneous Markov chains

Open questions remain!
■ what about inhomogeneous Markov chain with $n>2$ kernels

- possibility to find other applications such that ABC computation, and "MCMC for doubly intractable distributions", (Single Auxiliary Variable Method, Exchange Algorithm...)

