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Summary

This research internship allowed me to take an interest and learn more about
Markov processes, and their application to molecular biophysics. I first familiar-
ized myself with the software Matlab with which I did most of my simulations
and algorithms, learning how to simulate simple Monte Carlo Markov Chains
and infer them.

As Dr. Florian Maire was curious about the fact that dynamics of small
peptides, which are accurately captured by Markov-based models called Coarse
Master Equations (CME), can be described by really simple statistics, I had
the opportunity to meet Dr. Vio Buchete and take interest in Coarse Graining
theory. Slowly at first but surely I was able to understand the framework of
master equation models and their interest in understanding and simplifying
protein dynamics.

I worked on a method to simulate transition rate matrices, a parameter
that govern the dynamics of those processes under Markovian assumption, and
studied their spectral properties.

I then tackled the topic of estimating the probability that a simpler repre-
sentation of the protein dynamics can be considered. Results show that such an
alternative representation depends on the number of states and on the degree
of connectivity between them. I tried to provide guidelines on how to estimate
the error that one is committing when working with the simpler model.

In the light of these analyses I attempted to draw an analogy with the
discrete-time general state space model, hoping to find similar results but much
remains to be done!
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1 Introduction

1.1 Protein Dynamics

A most important feature of protein dynamics such as protein folding is that
proteins chemical properties vary according to their conformation. Modeling the
protein dynamics is thus necessary in order to group the states of the protein,
which are physically characterized by many parameters such as their energy,
position, relative angles, that correspond to stable conformations.

Inference based on experimental data usually yields to a large amount of
states, paving the way to complicated models that practitioner may struggle to
interpret.

Markovian models such as the Coarse Master Equations, by describing the
system at a coarse level, enable analytical treatments while accurately incorpo-
rating detailed molecular information.

1.2 The Insight Center for Data Analytics - University
College Dublin

Located in Dublin, the Insight Center for Data Analytics is a preponderant
data analytics research organisation. Aiming to find solutions for the area of
connected health and the discovery economy, it’s main areas of priority research
are:

• Machine Learning & Statistics

• Semantic Web

• Linked Data

• Media Analytics

• Optimisation & Decision Analytics

• Personal Sensing

• Recommander Systems

My internship took place in the Statistics department - located in the School
of Mathematics and Statistics at University College Dublin - led by Prof. Nial
Friel and under the Supervision of Dr. Florian Maire. Dr. Florian Maire is a
postdoctoral research fellow who takes interest in Markov chain Monte Carlo
methods and Expectation Maximization algorithms with application to Big data
problems, Image processing and Network models.
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2 Coarse Master Equations

2.1 The Statistical Model

Dynamics of a molecular system can be seen as the motion of a polypeptide
chain on a complex energy landscape (see [Prinz et al., 2011]). We assume that
the molecular system studied lives in a continuous state space Ω consisting of
positions, momenta and energy of all the atoms considered. Its time-evolution
trajectory {X(t), t > 0} is defined on the probability space (Ω,B(Ω),P) and
observes the following properties:

(1) {X(t), t > 0} is a (memoryless) stochastic process on Ω which satisfies the
Markov property that is, for all (x, y, z) ∈ Ω3 and 0 < t0 < t1 < t2:

P(X(t2)) ∈ dx |X(t1) = y,X(t0) = z) = P(X(t2) ∈ dx |X(t1) = y)

(2) {X(t), t > 0} is assumed to be time-homogeneous, that is, for all (x, y) ∈
Ω2, h > 0 and t > 0:

P(X(t+ h)) ∈ dx |X(h) = y) = P(X(t) ∈ dx |X(0) = y)

(3) {X(t), t > 0} is irreducible: any subset of Ω can be reached by an infinitely
long trajectory and are visited with a frequency given by the Boltzmann
distribution that admits as density

π(x) ∝ exp{−βH(x)} , x ∈ Ω ,

where H is the Hamiltonian operator and β some positive constant.

(4) {X(t), t > 0} is reversible: for all (x, y) ∈ Ω2, the probability density of
going from state X(t) = x to state X(t + τ) ∈ dy in time τ , Pτ (xt,dy),
fulfills the detailed balance relation:

π(dx)P(X(t) + τ) ∈ dy |X(t) = x) = π(dy)P(X(t) + τ) ∈ dx |X(t) = y) .

In most macromolecular systems only the region which contains conforma-
tions of relatively low energies is populated. Thus, a common way to characterize
this region is to subdivide it into coarse sets, each of which comprising a group
of similar molecular structures. Ω is thus subdivided into N ∈ N cells, whereby
defining discrete microstates. We should note that by subdividing Ω we don’t
know where exactly {X(t), t > 0} is and thus lose accuracy in the reproduction
of long-time kinetics.
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{X(t), t > 0} (considered to be regular and stable) now takes value in the
discrete state S = {1, 2, . . .}. We want to express the dynamics in terms of the
transition probabilities between these states such that the continuous process is
well approximated:

We postulate that there exists a set of functions

ki : S\{i} → R+

for i ∈ S such that for all j 6= i and small h > 0

P(X(t+ h) = j|X(t) = i) = ki(j)h+ o(h) (1)

and we define the P (t) ∈Mn(R) as the matrix whose elements are:

∀(i, j) ∈ S2 Pi,j(t) = P(X(t) = j|X(0) = i)

We note that:

(1)
∑
j∈S Pi,j(t) = 1 for all i ∈ S and t ≥ 0

(2) P (t) satisfies the semi-group property (with the matrix product):

∀h > 0 P (t+ h) = P (t)P (h)

as a straightforward application of the Law of Total probability and the
Markov property.

(3) lim
t→0

P (t) = 11n

(4) P (t) is an operator that acts:

(a) on M(S) the set of probability measure on S:

P (t) : M(S) −→ M(S)
µ 7−→ µP (t)

(b) on Rn:
P (t) : Rn −→ Rn

f 7−→ P (t)f

The derivation operator d/dt on time-dependent matrices ofMn(R) is {dM(t)/dt}i,j =
{dMi,j(t)/dt}

The rate transition matrix K (or infinitesimal generator) with K ∈ Mn(R)
is thus defined:

lim
t→0

dP (t)

dt
= K (2)
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Properties:

(1) for all j 6= i, Ki,j = ki(j)

(2) for all i ∈ S Ki,i = −
∑
j 6=iKi,j

(3) Verifies the forward and backward Kolmogorov equations:

∀t ≥ 0
dP (t)

dt
= P (t)K = KP (t) (3)

(4) We can derive P from K as follows:

P (t) =

+∞∑
n=0

(tK)n

n!
= exp(Kt) (4)

(5) Lastly, it verifies the following master equation:

dp(t)

dt
= p(t)K (5)

with p(t) = P(Xt ∈ ·) being the probability distribution of the chain at time
t

(1) Proof. when t→ 0, P(Xt = j|X0 = i) = ki(j)t

(2) Proof. ∀t ≥ 0
∑N
j=1 Pi,j(t) = 1 ⇔ lim

t→0

∑N
j=1

dPi,j(t)
dt = 0 ⇔ Ki,i =

−
∑
j 6=iKi,j

(3) Proof. from the semi group property of P (t):

∀t ≥ 0
dP (t)

dt
= lim
h→0

P (t+ h)− P (t)

h
= P (t) lim

h→0

P (h)− P (0)

h
= P (t)K

We get the backward Kolmogorov equation the same way.

(4) Proof. We have the existence since K is bounded. Starting from the forward
or backward Kolmogorov equation and then switching d

dt and
∑+∞
n=0 both

equations are satisfied.

(5) Proof. Let’s note that p(t) = P(Xt ∈ ·) =
∑
i∈S P(X(0) = i,X(t) ∈ ·) =∑

i∈S P(X(0) = i)Pi,·(t).

dp(t)

dt
= lim
h→0

p(t+ h)− p(t)
h

= lim
h→0

∑
i∈S P(X(0) = i)Pi,·(t+ h)− Pi,·(t)

h

=
∑
i∈S

P(X0 = i) lim
h→0

Pi,·(t+ h)− Pi,·(t)
h

=
∑
i∈S

P(X(0) = i)
∑
j∈S

Pi,j(t)Kj,·

=
∑
j∈S

P(Xt = j)Kj,· = p(t)K

We finally get the time evolution of the chain distribution:

p(t) = p(0) exp(Kt), ∀t > 0 (6)
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Jensen’s method:

A common method to compute CTMC (continuous time markov chain) is
to approximate the process by a DTMC (discrete time markov chain, the em-
bedded chain). {X(t), t > 0} is regarded as a DTMC with transition matrix R
(instantaneous jump probability matrix) defined as

Ri,j = ki(j)/
∑
6̀=i

ki(`)

which is the instantaneous probability to jump from i to j 6= i and Ri,i = 0. The
probability of the length of staying at state i follows an exponential distribution
with parameter −Ki,i.

We scale the infinitesimal generator K by any positive real number k̄ > 0 >
maxi∈S{−Ki,i} so that transition occur at the same rate in every state (kind
of like we supposed that for all i ∈ S,

∑
` 6=i ki are all equal). We consider

the matrix R̄ defined with R̄i,j = ki(j)/k̄ and R̄i,i = 1 −
∑
j 6=i R̄i,j = 1 −∑

j 6=i ki(j)/k̄, that is

R̄ = In + k̄−1K. (7)

Let’s consider the following algorithm:

(1) simulate a Poisson process {N(t), t > 0} with parameter k̄

(2) simulate a discrete time Markov chain {Yn, n ∈ N} with transition matrix
R̄

Set for all t ≥ 0, Xt = YN(t). Then, {X(t), t > 0} is a CTMC with generator
K.

Proof. First, for i 6= j:

P(X(t) = j|X(0 = i) =

∞∑
n=0

P(X(t) = j,N(t) = n|X(0) = i)

=

∞∑
n=0

P(X(t) = j|N(t) = n,X(0) = i)P(N(t) = n|X(0) = i)

=

∞∑
n=0

P(YN(t) = j|N(t) = n, Y (0) = i)P(N(t) = n|X(0) = i).

The first term of the sum is zero since {Y (0) = j}, {Y (0) = i} with i 6= j
are incompatible. Moreover, for all n ≥ 2 we have:

P(YN(t) = j|N(t) = n, Y (0) = i)P(N(t) = n|X(0) = i) = R̄ni,j(k̄t)
n exp(−k̄t)/k!︸ ︷︷ ︸
o(t)

It comes

P(X(t) = j|X(0) = i) = R̄i,j(k̄t) exp(−k̄t) + o(t) = ki(j)t(1− k̄t) + o(t)

= ki(j)t+ o(t)

which is coherent with 1
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Then, for i = j:

P(X(t) = j|X(0) = i) =

∞∑
n=0

P(X(t) = i,N(t) = n|X(0) = i)

= P(X(t) = i,N(t) = 0|X(t) = i) + P(X(t) = i,N(t) = 1|X(0) = i)

+
∑
n≥2

P(X(t) = i,N(t) = n|X(0) = i)

= P(Y (0) = i|Y (0) = i)P(N(t) = 0) + P(Y (1) = i|Y (0) = i)P(N(t) = 1)

+
∑
n≥2

P(X(t) = i,N(t) = n|X(0) = i)

= (1− k̄t+ o(t)) + R̄i,i(k̄t+ o(t)) +
∑
n≥2

P(X(t) = i,N(t) = n|X(0) = i)︸ ︷︷ ︸
o(t)

= 1− k̄t+ R̄i,ik̄t+ o(t) = 1− k̄t+ (1−
∑
j 6=i

ki(j)/k̄)k̄t+ o(t)

= 1−
∑
j 6=i

ki(j)t+ o(t)

which is coherent with 1

Reducibility:

Remark 1. An irreducible finite-state markov chain is always positive recur-
rent.

Proposition 1. For an irreducible DTMC on discrete state space with transi-
tion matrix R,Ri,i > 0 implies that i is aperiodic.

Proof. R2
i,i =

∑
j 6=iRi,jRj,i + R2

i,i > 0 and by recurrence for all n ≥ 2, we see
that Rni,i > 0 thus the state i is aperiodic.

Remark 2. For the uniformization embedded chain, k̄ > 0 > maxi∈S −Ki,i ≥∑
l 6=i ki(l) thus ∀i ∈ S, R̄i,i = 1−

∑
j 6=i ki(j)/k̄ > 0. So the chain is aperiodic.

Proposition 2. The CTMC {X(t), t > 0} is irreducible if and only if its
embedded chain with transition matrix R̄ is irreducible.

Proof. {Yn, n ∈ N} be the embedded chain with transition matrix R̄. We sup-
pose {Yn, n ∈ N} irreducible. Then for all (i, j) ∈ S2 there exists a ni,j ∈ N
such that R̄

ni,j

i,j > 0. By construction there will be a time τi,j > 0 such that

P(X(τi,j) = j|X(0) = i) > 0 and τi,j = inf
t
{N(t) = ni,j}.

{X(t), t > 0} is irreducible. Let’s suppose that on the other hand {Y }n is
reducible. Then there exists (i, j) ∈ S2 such that for all n ∈ N R̄ni,j = 0, which
implies that for all t > 0, Pi,j(t) = 0. This is contradicting that {X(t), t > 0}
is irreducible.
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Stationary distribution:

Definition 1. A distribution π̄ = {π̄i, i ∈ S} is said to be a stationary distri-
bution for the markov chain {Yn, n ∈ N} if π̄R̄ = π̄, i.e. π̄j =

∑
i∈S π̄iR̄i,j,

∀j ∈ S.

We recall firstly the ergodic theorem for aperiodic and irreducible DTMC:

Theorem 1. If the DTMC is irreducible and aperiodic, there exists an unique
probability distribution {π̄1, · · · , π̄n} such that

(1) it is stationary for R̄, π̄R̄ = π̄

(2) it is a limiting distribution, for all i ∈ S, lim
n→∞

P(Y (n) = j|Y (0) = i) = π̄j

Proof. Existence

{Yn, n ∈ N} be an irreducible and aperiodic chain with transition matrix R̄
and the measure µji the mean number of times {Yn} is at state j before the first
return at state i (noted Ti). We have that:

µji =

∞∑
n=1

P(Y (n) = j, n ≤ Ti|Y (0) = i)

=
∑
`∈S

∞∑
n=1

P(Y (n) = j, Y (n− 1) = `, n− 1 ≤ Ti|Y (0) = i)

=
∑
`∈S

∞∑
n=2

P(Y (n− 1) = `, n− 1 ≤ Ti|Y (0) = i)R̄j,`

= (µjR̄)i

Since {Yn} is irreducible positive recurrent,
∑
`∈S µ

`
i <∞, and we get {µji/

∑
j∈S µ

j
i , j ∈

S} stationary distribution.

Unicity

Let µ be the measure considered above with µi = 1 and ν any stationary
measure with νi = 1. For any j 6= i we have that

νj = νiR̄i,j +
∑
`1 6=i

ν`1R̄`1,j

= R̄i,j +
∑
`1 6=i

R̄i,`1R̄`1,j +
∑

`1,`2 6=i

`2R̄`2,`1R̄`1,j

≥ R̄i,j +

∞∑
n=1

∑
`1,··· ,`n 6=i

R̄i,`nR̄`n,`n−1
· · · R̄`1,j

=

∞∑
n=0

P(Y (n+ 1) = j, n+ 1 ≤ Ti|Y (0) = i) = µj
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Now suppose that ∃j ∈ S such that µj > νj . By irreducibility there exists
n ∈ N such that R̄ni,j > 0. The stationarity of µ and ν implies that∑

`∈S

µ`R̄
n
`,i = µi = νi =

∑
`∈S

ν`R̄
n
`,i

Thus
0 =

∑
`∈S

(µ` − ν`)R̄n`,i ≥ (µj − νj)R̄nj,i > 0

which is absurd. So we have the unicity of the stationary measure up to a
constant multiple and thus we have the unicity of the stationary probability.

Limiting distribution

Let {Wn, n ∈ N} be a independent copy of {Yn, n ∈ N}, except that W
starts with initial distribution π. We have that P(Wn = i) = πi for all n ≥ 0
and i ∈ S. The idea of the proof is to consider the bivariate process {Zn =
(Yn,Wn), n ∈ N}, Z being an irreducible, recurrent and aperiodic markov chain
as Y and W . Let h = inf{n ≥ 0, Yn = Wn}.

We have the following property, for all i, j ∈ S:

P(Yn = j, h ≤ n|Y (0) = i) = P(Wn = j, h ≤ n)

Besides, {Zn} is recurrent so P(h ≤ ∞) = 1 whatever the initial distribution of
Y . Thus, we obtain for i, j ∈ S

|P(Y (n) = j|Y (0) = i)− π̄j | = |P(Y (n) = j|Y (0) = i)− P(Wn = j)|

≤ |P(Y (n) = j, h ≤ n|Y (0) = i)− P(Wn = j, h ≤ n)|︸ ︷︷ ︸
=0

+ |P(Y (n) = j, h > n|Y (0) = i)− P(Wn = j, h > n)|︸ ︷︷ ︸
=P(h>n)

= lim
n→∞

P(h > n) = 0

We arrive to our main theorem:

Theorem 2. If the CTMC is irreducible, then it admits an unique limiting
distribution which is also its unique stationary distribution.

Proof. If the CTMC is irreductible then its embedded chain is also irreductible
and thus aperiodic. We apply the ergodic theorem as described in Theorem 1.
If π̄ is stationary for R̄, then it is stationary as well for the CTMC. Indeed, if
we assume X0 ∼ π̄ we have for all j ∈ S:

P(X(t) = j) =

N∑
i=1

∞∑
n=1

P(X(t) = j|X(0) = i,N(t) = n)P(N(t) = n)π̄i = · · · = π̄j .

Now, from (2) we can write:

∀ε > 0, ∃n0 ∈ N, n ≥ n0 ⇒ |R̄ni,j − π̄j | < ε/2.
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Independently, since limt→∞ P(N(t) < n0) = 0, we can choose t0 such that
for all t ≥ t0,P(N(t) < n0) < ε/4. Going back to the CTMC, we want to show
that there exists a probability distribution {α1, · · · , αn}, such that for all i ∈ S
limt→∞ P(X(t) = j|X(0) = i) = αj . Let ε > 0 and t ≥ t0, we have for all
(i, j) ∈ S2:

|P(X(t) = j|X(0) = i)− π̄j | =

|[P(X(t) = j|X(0) = i, Nt ≥ n0)− π̄j ]P(N(t) ≥ n0)+

[P(X(t) = j|X(0) = i, N(t) < n0)− π̄j ]P(N(t) < n0)|

≤ |R̄n0+u(t)
i,j − π̄j |︸ ︷︷ ︸

<ε/2

P(N(t) ≥ n0)+|P(X(t) = j|X(0) = i, N(t) < n0)−π̄j |P(N(t) < n0)︸ ︷︷ ︸
<ε/4

≤ ε

since u(t) ≥ 0 and for two real numbers (a, b) ∈ [0, 1 ], |a − b| ≤ 2. We
conclude that the limiting distribution exists and coincides with the stationary
distribution. The uniqueness of the invariant distribution for the CTMC follows
from the uniqueness for the DTMC.

Remark 3. We can see that π̄ does not depend on the actual choice of k̄ in the
definition of R̄. Indeed, for all k̄ > maxi∈S{−Ki,i} we have that

π̄R̄ = π̄ ⇔ π̄(R̄− In) = 0⇔ (k̄)−1π̄K = 0⇔ π̄K = 0

Reversibility

The dynamics of the detailed molecular system is considered to be reversible,
so that the direction of the time flow does not modify the distribution of the
chain. For example,if we consider a DTMC {Xn, n ∈ N} with transition matrix
R then for any (i, j) ∈ S2, and n1 < n2 = n1 + u, we would have

P(X(n1) = i,X(n2) = j) = P(X(n2) = i,X(n1) = j)

⇔ P(X(n1) = i)P(X(n2) = j|X(n1) = i) = P(X(n1) = j)P(X(n2) = i|X(n1) = j)

⇔ P(X(n1) = i)Rui,j = P(X(n1) = j)Ruj,i.

which is an impossible condition. Thus, when considering time reversibility we
assume another condition which is that the chain is supposed to be at stationary
regime.

The resulting theorem is:

Theorem 3. A DTMC is said to be reversible if and only if for all u ∈ N and
(i, j) ∈ S2

Rui,j = Ruj,i
πj
πi

Remark 4. (1) For u = 1 this equation is known as the detailed balance
equation.

(2) having the detailed balance equation is sufficient for the equation to hold for
any u.

12



Proof. For u = 2:

πiR
2
i,j =

∑
n∈S

πiRi,nRn,j︸ ︷︷ ︸
πnRn,i

=
∑
n∈S

Rn,iRj,nπj = R2
j,iπj

Then by induction this holds for all u > 2

The situation is the same for CTMC as the former theorem translates to the
following equation:

πiPi,j(t) = πjPj,i(t)

Theorem 4. {Xt, t > 0} is time reversible at equilibrium if and only if K is π
reversible.

Proof. ⇒ We suppose that {Xt, t > 0} is time reversible at equilibrium, with
πi = P(X(t) = i). Then for h > 0,

P(X(t) = i,X(t+ h) = j) = P(X(t) = j,X(t+ h) = i)

and so,

πi
P(X(t+ h) = j|X(t) = i)

h
= πj

P(X(t+ h) = i|X(t) = j)

h

Letting h lim 0 we get that K is π reversible.

⇐ We suppose that K admits detailed balance for π. We recall that

P (t) = exp(Kt)

so that

Pi,j(t)

+∞∑
n=0

tn

n!
{Kn}i,j

it is clear that if K is π reversible, then {Xt, t > 0} is time reversible at equi-
librium.

Thus, we will call detailed balance equation:

πiKi,j = πjKj,i, ∀i, j ∈ S (8)
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2.2 Spectral Properties

2.2.1 Spectral decomposition

To know that {Yn, n ∈ N} or {Xt, t > 0} are reversible do not provide informa-
tion on whether K and R are symmetric matrices. In fact, they are not unless
the stationary distribution π is the uniform distribution. So we have to assess
if K (or R) are diagonalizable. We consider the Hilbert space L2(π) ⊂ RN with
N the size of S:

(1) (x, y) ∈ RN , 〈x, y〉 =
∑N
i=1 πixiyi

(2) ||x||2 =
∑N
i=1 πi(xi)

2 <∞

(3) And the operator norm: ||A|| = supx∈RN ,||x||>0
||Ax||
||x||

Be π the stationary distribution of {Xt, t > 0} (resp. {Yn, n ∈ N}), then K
(resp. R) is a self-adjoint operator, thanks to detailed balance equation, on
L2(π) ⊂ RN :

〈Kx, y〉 =

N∑
i=1

πi(

N∑
j=1

Ki,jxj)yi =

N∑
j=1

πjxj

N∑
i=1

Kj,iyi︸ ︷︷ ︸
{Ky}j

= 〈x,Ky〉

Thus, the spectral theorem tells us that K (resp. R) is diagonalizable and there
is an orthonormal basis of eigenvectors such that:

K = Ψ∆Ψ−1 (9)

with:

(1) Ψ’s columns are K right eigenvectors.

(2) ∆ is the diagonal matrix formed of the eigenvalues ofK: ∆ = diag(λ1, . . . , λN ).

(3) Ψ−1’s rows are K left eigenvectors.

Spectral features of R

Jensen’s inequality tells us that for any x ∈ Rn

{Rx}2i = (
∑N
j=1 xjRi,j)

2 ≤
∑N
j=1 x

2
jRi,j

since Ri,j are probabilities. It comes that

||Rx||2 =

N∑
i=1

πi{Rx}2i ≤
N∑
j=1

x2j

N∑
i=1

πiRi,j =

N∑
j=1

πjx
2
j = ||x||2

implying ||R|| ≤ 1. ξ1 = 1 is the eigenvalue of R with right eigenvector x1 = 1N
and left eigenvector y1 = π.

Rx1 = x1 ⇒ ||Rx1|| = ||x1||

14



implying ||R|| ≥ 1. Thus, ||R|| = 1 Let’s consider another eigenvalue ξ2 with
right eigenvector x2 and left eigenvector y2, we have that

||Rx2||
||x2||

⇒ |ξ2| ≤ 1

The Perron-Frobenius theorem states that a square matrix with positive entries
(which is the case for our stochastic matrices R and P (t)) has a unique largest
eigenvalue, which in this case is ξ1 = 1. Thus, |ξ2| < 1 and likewise for the other
eigenvalues of R.

Spectral features of K

We note λ1 ≥ λ2 ≥ · · · ≥ λN the N eigenvalues of K and {ψ(R)
i , i ∈

{1, · · · , N}} their respective right eigenvectors. For t > 0 and i ∈ {1, . . . , N}
we have that:

P (t)ψ
(R)
i =

N∑
n=0

tn

n!
Knψ

(R)
i =

N∑
n=0

(λit)
n

n!
ψ
(R)
i = exp(λit)ψ

(R)
i

For any i ∈ {1, . . . , N}, ψ(R)
i is also an eigenvector of P (t) with eigenvalue

ξi = exp(λit). For t > 0
P (t) = Ψ exp(∆t)Ψ−1

Since P (t) is a stochastic matrix we can apply the previous analysis and see
that for all i ∈ {2, . . . , N} and t > 0:

ξi < ξ1 = 1⇒ exp(λit) < exp(λ1t) = 1

Thus,
λ1 = 0 > λ2 ≥ · · · ≥ λN (10)

We can now rewrite 6:

p(t) = p(0) exp(Kt) = p(0)Ψ exp(∆t)Ψ−1

= p(0){
N∑
n=1

Ψi,n exp(λnt)Ψ
−1
n,j}1≤i,j≤N

= {
N∑
i=1

pi(0)

N∑
n=1

Ψi,n exp(λnt)Ψ
−1
n,j}1≤,j≤N

Thus:

p(t) =

N∑
i=1

N∑
j=1

(pj(0)ψ
(R)
i (j)) exp(λit)ψ

(L)
i (11)

with Ψ−1i,: = ψ
(L)
i and Ψ:,i = ψ

(R)
i for all i ∈ {1, . . . , N}.

We note that a similar expression could be found for the DTMC R since it
is π-reversible and is thus diagonalisable.
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We know that ψ
(R)
1 = 1 and ψ

(L)
1 = π. Since K is self-ajoint we have the

following normalization condition for our left and right eigenvectors, ∀i, j ∈
{1, . . . , N}:
(1)

ψ
(L)
i (j) = πjψ

(R)
i (j) (12)

(2)
N∑
n=1

ψ
(R)
i (n)ψ

(R)
j (n)πn

=

N∑
n=1

ψ
(L)
i (n)ψ

(L)
j (n)/πn

=

N∑
n=1

ψ
(L)
i (n)ψ

(R)
j (n)

= δij

The probability distribution of {X(t), t > 0} corresponds to the superposi-
tion of N processes:

(1) a stationary process, π

(2) N − 1 transient processes ρi(t), t > 0, i ∈ {2, · · · , N} such that:

ρi(t) =

N∑
j=1

pj(0)ψ
(R)
i (j) exp(−t/τi)ψ(L)

i (13)

with τi = 1/λi being the relaxation time of process i

We draw attention to the following remarks:

Remark 5. The left eigenvectors of K apart from ψ
(L)
1 = π will all add up to

0. Indeed, for i ∈ {2, . . . , N}:
N∑
n=1

ψ
(L)
i (n) = (1/λi)

N∑
n=1

N∑
m=1

ψ
(L)
i (m)Km,n = (1/λi)

N∑
m=1

ψ
(L)
i

N∑
n=1

Km,n = 0

Thus, the transient processes ρi(t), t > 0, i ∈ {2, . . . , N} are viewed as
flows which move the probability mass across different states. Those flows are
proportional to the left eigenvectors which therefore act as probability mass
transfer directions.

Remark 6. If p(0) = π then ∀t > 0, p(t) = π

Indeed, ∀i, j ∈ {1, . . . , N} ψ(L)
i ψ

(R)
j = δij and ψ

(L)
1 = π.

Finally,

Remark 7. If the system is at equilibrium but perturbed by a vector proportional

to one of the left eigenvectors ψ
(L)
i then the typical time to reach back equilibrium

is τi = 1/λi. Indeed, p(0) = π + δψ
(L)
i and the probability density vector is

p(t) = π + δ

N∑
j=1

ψ
(L)
i (j)ψ

(R)
i (j) exp(λit)ψ

(L)
i (14)
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Figure 1: Representation of the stationary process and the N − 1 transient
processes throughout time (in log scale) for five states.

We can see that all the transient processes add up to zero for t > 0.
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2.2.2 Conformational Clustering: Two-States Representation

2.2.2.1 Folded/Unfolded Despite the complexity of protein folding, ex-
periences tend to show that, in some situations, it can be approximated by a
simpler process consisting of only two macroscopic states (which are aggrega-
tions of the microstates) namely folded and unfolded.

Two-state kinetic processes are physically justified if protein molecules rapidly
equilibrate between different unfolded conformations prior to complete folding
(or conversely). Majority of the protein population is localized in two basins
separated by a narrow bottleneck, so that the intrabasin relaxation (the equi-
libration within the folded and unfolded states) occurs much faster than the
interbasin exchange (which corresponds to the folding relaxation time) and thus
kinetics of equilibration is essentially single exponential.

2.2.2.2 The Spectral Gap A distinctive feature of two-state proteins is
thus the presence for the CTMC {X(t), t > 0} of a gap in the eigenvalue
spectrum after the first non-zero eigenvalue λ2, so such that:

λ1(= 0)− λ2 � λ2 − λ3.

We will call spectral gap the following expression:

γ =
λ3 − λ2
λ2

=
λ3
λ2
− 1 =

τ2
τ3
− 1 (15)

{X(t), t > 0} is said to have a spectral gap if: γ ≥ 10. Indeed, if we set:

1. ω = t/τ2

2. αi =
∑N
j=1 pj(0)ψ

(R)
i (j) for i ∈ {2, . . . , N}

We have:

p(ω) = π + α2 exp(−ω)ψ
(L)
2 + α3 exp(−ω(γ + 1))ψ

(L)
3 + · · ·

If γ ≥ 10 then all the flows ρi, i ≥ 3 are negligible compared to ρ2:
The amplitude between ρ3 and ρ2 at t = τ2 is

≈ α3

α2
exp(−10)

Thus we can ignore the flows above ρ2 as an approximation.
Usually, in a two-states like system, folded and unfolded macrostates respec-

tively correspond to the following U and F here described arbitrarily:

1. U = {1 ≤ i ≤ N,α2ψ
(L)
2 (i) < 0}

2. F = {1 ≤ i ≤ N,α2ψ
(L)
2 (i) > 0}

The flow ρ2 transfers probability mass from the states in U to those in F .
The speed of the probability mass transfer between states through ρ2 is (in the
case γ � 1) much lower than that of the other flows. Since each flow converges
to zero, the error committed by dropping the n − 2 fastest flows will have no
impact on the dynamic of p(t) once the characteristic time τ3 is passed.
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2.2.2.3 Splitting probability In a variant of the above approach, one can
identify microstates that can be faithfully clustered according to their splitting
probability σi.

We define it as follow:
Starting out in state i, the protein folds before it unfolds with probability

σi.
In such a system all microstates can be separated into three groups: Unfolded

U ,folded F , and intermediate I. Microstates forming the intermediate group
correspond to those of the bottleneck region (they are far fewer than the rest),
they are called the transition states. Hence, σi = 1 and σi = 0 for respectively
i ∈ F and i ∈ U . We can write:

σi = P(∃t1, t2 ∈ R, t1 < t2, X(t2) ∈ U,X(t1) ∈ F |X(0) = i) (16)

We define the transition state ensemble as the one formed by the states for
which σi is close to 0.5. The choice of the bottleneck boundaries is arbi-
trary. In the case of a two-state system, Berezhkovskii and Szabo showed (see
[Berezhkovskii and Szabo, 2004]) that σi can be approximated to a good ap-
proximation as:

σi =
ψ
(R)
2 (i)−minj(ψ(R)

2 (j))

maxj(ψ
(R)
2 (j))−minj(ψ(R)

2 (j))
(17)

with ψ
(R)
2 corresponding to the second right-hand eigenvector of K, shifted

and scaled to the interval [0, 1]. The states are thus grouped in such a way that
those with σi < 1/2 belong to one class, and those with σi ≥ 1/2, to the other.
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2.3 Assigning the Conformations

Buchete, Hummer, Buchner, Murphy and Kubelka (see [Buchete and Hummer, 2008]
and [Buchner et al., 2011]) showed how to construct coarse master equation
models from simulation data. We will give here a glimpse of the proceeding to
have a proper assignment of conformations to coarse states.

One has to wonder how to initially partition the state space in a way
that doesn’t lose too much of the information of the time-evolution trajectory
{X(t), t > 0} of the system.

Indeed, to get a clustering of the energy landscape of a wide selection of
biomolecular systems which justifies the assumption made of Markovian dy-
namics, no general procedure is available.

However, for small peptide like systems (the kind of protein we are consid-
ering in this report), a satisfying way to do so is to partition the state space by
geometrical clustering where each cluster should represent a set of structures
that the dynamics remains in for a long time before jumping to another cluster.

A good example of such geometrical clustering is the CBA (conformation
based assignment) where the Ramachandran Free Energy Surface is considered.
The energy of the protein is seen as a function of two torsion angles of the
polypeptide chain which also called Ramachandran angles (and denoted Phi
and Psi).

Following the value of the angles the conformations are separated into dif-
ferent states.
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2LFM: Abeta peptide
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Figure 2: Ramachandran plot for an Abeta peptide, done thanks to the Ra-
machandran Toolbox from Matlab. The blue square illustrates the choice of a
conformational state by the CBA method.
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3 Results and Discussion

3.1 Designed Method to simulate Random Rate matrices

3.1.1 Fitting the Model

As we would like to find a convenient method to simulate transition rate matrices
for a given number N of microstates, we have to define some conditions to make
our results meaningful.

3.1.1.1 Distribution of the Rates of Transition We want positive tran-
sition rates with big entropy, in order to keep a broad approach of the problem.
I considered for our simulations the exponential distribution since it is the least
biased distribution of non-negative numbers.

Ki,j ∼ exp(10β) with β being the tuning parameter.

3.1.1.2 Connectivity We have to define which microstates are connected.
For the purpose of simplicity we will usually consider that transitions only occur
between neighboring microstates, which otherwise would greatly enhance the
computational complexity. A more complete model could be considered in which
transition rates are decreasing the further their related microstates are far from
each other. We define the bandwidth m which corresponds to the number of
non-zero lower diagonals.

3.1.1.3 Relaxation Times Finally, we try to get realistic relaxation times.
We want relaxation times which are on par with the ones of small peptides, so
between 10−6 and 10−12 seconds. To do so we make the tuning parameter and
the number of diagonals set to zero (N −m− 1) fluctuate.
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Figure 3: Distribution of the relaxation times for random exponential rate ma-
trix of N = 32 microstates, compared to the ones of a small peptide, with several
parameters and connectivity considered.

We then chose
β = 9

and keep m adjustable.
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3.1.2 Computational Simulation

3.1.2.1 Algorithm We get for our Random Matrix Simulation the following
algorithm:

(1) simulate the vector of equilbrium probability

π = (α1, . . . , αN )/

N∑
i=1

αi

where αi ∼ unif(0, 1).

(2) raw rate matrix K (squarred matrix of size N)

• lower triangular:

– iid entries with exponential distribution Kij ∼ exp(109) on the
first m diagonals (i > j, m positive integer).

– other entries are set to zero.

• upper triangular: deterministic so as to satisfy detailed balance

Ki,j = Kj,i
πj
πi

• diagonal: deterministic entries to make the sum of the rows equals
zero.

example of simulated transition rate matrix
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Figure 4: Example of simulated exponential rate matrix K (for N = 32 mi-
crostates) scaled in s−1.
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3.1.2.2 Monte Carlo Method We simulate a large number of iid rate
transition matrices and store each time the interesting output value. To do so
allow us to get the distribution of the output of interest. This method is really
interesting in that by generating a large number of data it allows us to get
graphical results and to get quite easily the ”sensitivity” of inputs on results.

We recall that the monte carlo method is based on the weak law of large
numbers.

Theorem: Let X1, X2, . . . , XN be iid Lebesgue integrable random variables
with expected value E(Xi) = x for all i. We make the assumption of finite
variance. Then for any positive number ε,

lim
n→∞

P(|X̄n − x| ≥ ε) = 0

Proof: We apply Chebyshev inequality to the random variable X̄n with

X̄n =
1

n
(

n∑
i=1

Xi).

3.1.2.3 Bootstrapping To control and check the stability of our results,
we will use the Bootstrap method.

Principe:

We simulate several times a random sample of transition rate matrices (iid) of
same size N. So, although each resample will have the same number of elements,
each one will randomly depart from the others. And because the elements
in these resamples vary slightly, the statistic of interest written θ̂i, calculated
from one of these resample will take on slightly different values. The bootstrap
method asserts that the relative frequency distribution of these θ̂i is an estimate
of the sampling distribution of the statistic of interest θ̂.

We will base outselves on random samples of around 10, 000 iid rate transi-
tion matrices. The following graph gives an instance of gap probability density
function in the case N = 32 and m = 3. For each sample, we calculate for each
iteration of rate transition matrix its eigenvalues and then store its spectral gap,
getting through normal kernel density estimation (done thanks to the ksdensity
matlab function which is non-parametric) the gap distribution, we bootstrap to
get the final gap distribution.
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3.2 Two-States Representation

We recall that the spectral gap of a rate transition matrix is indicative about
knowing wether a simpler representation of the protein dynamics is possible (for
gap ≈ 10 the process is considered to be two-states like).
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Figure 5: Gap probability density function for random rate matrix (band diag-
onal) of size N = 32 and bandwidth m = 3, with quantiles.

We can see that the vast majority of the transition rate matrices will have a
spectral gap γ < 10, implying a priori that most processes won’t be well repre-
sented by a two-states like system. Thus, it draws into question the relevance of
the two-states approximation and the use of the splitting probability. In prac-
tice, we considered that a gap 7 ≤ γ ≤ 10 was enough to represent the system
as two-states like.
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3.2.1 Size/Connectivity

In order to get a good grasp at how common a two-states representation is, and
its dependences on the characteristics of the matrix, we study the distribution
of the gap in several cases of number of microstates N and number of non zero
lower diagonals m (the bandwidth).

For performance issues we only considered matrices from size 8× 8 to 200×
200. In terms of connectivity we worked from single diagonal matrices to full
matrices. We get the following results:
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Figure 6: Gap probability density function for band diagonal random rate ma-
trix of different bandwidths.
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trix of different bandwidths.

We can see that as it was expected the higher the bandwidth m is the lower
will be the probability to get a good two-states like system.
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For N the interpretation is made more difficult since it raises into question
the sparsity of the matrix. Indeed, for small matrices the value of N will matter
less than the density of the rate transition matrix concerning the probability to
get a good two-states like system. Nonetheless, we observe that the bigger N ,
the lower the variance of the gap will be.
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3.2.2 The Error Committed

We want to quantify the two-states approximation we are doing while neglecting
the flows ρi for i ∈ {3, . . . , N}.
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Figure 10: Representation of the probabilities p(t) and its approximation p̄(t)
throughout time (in log scale) for five states, with γ = 7.8.

We calculate the mean squared deviation and try to find its correlation with
the spectral gap γ. In order to find meaningful results we only simulate matrices
that have their second eigenvalue λ2 in a given (small) interval. Be p̄(t), t > 0
the approximation and ε the MSD. Then:

ε =

∫
t

||p(t)− p̄(t)||2dt
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We do not obtain a clear correlation between the value of γ and the effec-
tiveness of the two-states approximation as we would have hoped.

As we shall see now, we lack good control over our two-states approximation.
Since

p(0) = π +

N∑
i=2

N∑
j=1

(pj(0)ψ
(R)
i (j))ψ

(L)
i

we can write that:

p(t) = p(0) +

N∑
i=2

N∑
j=1

(pj(0)ψ
(R)
i (j))(exp(λit)− 1)ψ

(L)
i︸ ︷︷ ︸

φi(t)

(18)

where φi acts as a flow on the initial probability measure. However, the in-
terpretation of φi is made difficult for the reason that, considered independently,
the sole action of φi on p(0) may actually not result in a probability measure.

Let MN := {µ ∈ RN , µi ∈ (0, 1),
∑
i µi = 1} be the set of probability

measures on RN .
Let’s suppose now that for a subset J ⊆ {2, . . . , n}

p̄J(t) := p(0) +
∑
i∈J

φi(t) ∈MN

can serve as an approximation of p(t).
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Proposition 3. Let K be a transition rate matrix, (p(0), p) ∈ M2
N . For any

subset J ⊆ {2, · · · , N}, if p̄J(0) ∈MN then for all t > 0, p̄J(t) ∈MN .

Proof. We know thanks to remark 5 that all the left eigenvectors of K apart

from ψ
(L)
1 = π add up to 0. Thus, for any subset J ⊆ {2, . . . , N} and t > 0,

N∑
i=1

p̄J,i(t) = 1

Next, we have that for all i ∈ {1, . . . , N}, J ⊆ {2, . . . , N} and t > 0,

p̄J,i(t) = πi +
∑
j∈J

N∑
`=1

(p`(0)ψ
(R)
j (`)) exp(λjt)ψ

(L)
j (i) ∈ (0, 1)

⇔ |
∑
j∈J

N∑
`=1

(p`(0)ψ
(R)
j (`)) exp(λjt)ψ

(L)
j (i)| ≤ min{πi, 1− πi}

and p̄J(0) ∈ MN is a sufficient condition for this inequality to hold. Thus, for
all t > 0, p̄J(t) ∈MN .

However,

Proposition 4. Let K be a transition rate matrix, (p(0), p) ∈ M2
N . For any

subset J ⊆ {2, . . . , N}, it is not true that p̄J(0) ∈MN

Proof. We give a counterexample: Consider the CTMC where N = 3, J = 2,
X(0) = 1, and π is the uniform distribution. Thus ki(j) = 1/3 for i 6= j.

The three left eigenvectors of K are ψ
(L)
1 = [1/3, 1/3, 1/3], ψ

(L)
2 = [1,−1, 0]

and ψ
(L)
3 = [−1/2,−1/2, 1]. Since in this case K is symmetric then for all

n ∈ {1, . . . , N} ψ(R)
n = (ψ

(L)
n )T . Then:

p̄J(0) = π + ψ
(L)
2 = [4/3,−2/3, 1/3]

which is not a probability measure.

Thus, our two-states approximation is doable only for those processes that
have p̄J=2(0) as a probability measure.

It seems however that the study of γ is not enough to thoroughly assess
whether a two-states representation of the protein dynamics is possible.
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3.2.3 Relevance of the Splitting Probability

In the case of a two-states like system an ordering of the states between Folded
and Unfolded macrostates is doable, thanks to the splitting probability.

We note that a study of the occurence of transition states is possible, which
we recall are microstates for which σi is close to 0.5, the choice of boundaries
being arbitrary.
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Figure 12: Example of rank-ordered states in the case of a good gap for N = 32.

Simulations of MCMC show that the expression of the splitting probability
given by Berezhkovskii and Szabo is relevant for γ ≥ 7.

In an attempt to better understand the method Berezhkovskii and Szabo
used to find their approximation of the splitting probability (see [Berezhkovskii and Szabo, 2004]),
I tried to find it back. Since we use our two-states approximation:

p̄J=2(t) := p(0) +

N∑
i=1

(pi(0)ψ
(R)
2 (i))(exp(λ2t)− 1)ψ

(L)
2

We consider only two-states like processes that have p̄J=2(0) as a probability
measure.

Notation:

1. TF = inft>0{Xt ∈ F}

2. TU = inft>0{Xt ∈ U}

We call Splitting Probability the following expression:

σi = P(TF < TU |X(0) = i) = Pi(TF < TU )

for i ∈ S = {1, . . . , N}.
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We have that:

σi =

∫ ∞
0

Pi(TF < TU , TU ∈ dt)

=

∫ ∞
0

∫ t

0

Pi(TF < TU , TU ∈ dt, TF ∈ ds)

+

∫ ∞
0

∫ t

0

Pi(TF < TU , TU ∈ dt, TF ∈ ds)︸ ︷︷ ︸
=0

=

∫ ∞
0

∫ t

0

Pi(TF < TU |TU = t, TF = s)︸ ︷︷ ︸
=1

Pi(TU ∈ dt, TF ∈ ds)

=

∫ ∞
0

∫ t

0

Pi(TU ∈ dt|TF = s)Pi(TF ∈ ds)

Notation:

(1)
fij(dt) = Pi(Tj ∈ dt) = fij(t)dt

for i, j ∈ {1, . . . , N}

(2)
pij(t) = Pi(X(t) = j)

=

∫ t

0

Pi(X(t) = j, Tj ∈ ds)

=

∫ t

0

Pi(X(t) = j|Tj = s)Pi(Tj ∈ ds)

= pii ∗ fij(t)

(3)

p̃ij(λ) =

∫ ∞
0

pij(t) exp(−λt)dt

Thus,

σi =
∑
`∈U

∑
j∈F

∫ ∞
0

∫ t

0

fij(s)fj`(t− s)dsdt

We get:

σi =
∑
`∈U

∑
j∈F

∫ ∞
0

fij ∗ fj`(t)dt

σi =
∑
`∈U

∑
j∈F

∫ ∞
0

L−1(
p̃ij
p̃ii
× p̃j`
p̃jj

)(t)dt

We inject p̄J=2(t).
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After resolution, we get that

σi = a− ψ(R)
2 (i)b

for i ∈ S = {1, · · · , N}

with

a =
∑
j∈S

∑
`∈S

µ(µ+ ψ
(R)
2 (`)ψ

(R)
2 (j))

(µ+ (ψ
(R)
2 (j))2)(µ+ (ψ

(R)
2 (`))2)

+
1

ψ
(R)
2 (j) + ψ

(R)
2 (`)

(
(µ+ (ψ

(R)
2 (j))2)(ψ

(R)
2 (j))3

(µ+ (ψ
(R)
2 (j))2)2

+
(ψ

(R)
2 (`))3(µ+ (ψ

(R)
2 (`))2)

(µ+ (ψ
(R)
2 (`))2)2

)

and

b =
∑
j∈S

∑
`∈S

(ψ
(R)
2 (j))2(µ+ (ψ

(R)
2 (j))2)

(µ+ (ψ
(R)
2 (j))2)2)(ψ

(R)
2 (`) + ψ

(R)
2 (j))

− ψ
(R)
2 (j)

µ+ (ψ
(R)
2 (`))2

(
µ+ ψ

(R)
2 (j)ψ

(R)
2 (`)

µ+ (ψ
(R)
2 (j))2

− ψ
(R)
2 (`)(µ+ (ψ

(R)
2 (`))2)

ψ
(R)
2 (`) + ψ

(R)
2 (j)

)

and

µ =

N∑
i=1

(ψ
(R)
2 (i))2πi

I could not obtain a simpler expression...
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3.3 The Weibull Distribution

We consider the 2-Weibull Distribution (whose exponential distribution is taken
from) whose probability density function is:

f(x; a, b) =

{
b/a(x/a)b−1 exp(−(x/a)b) x ≥ 0
0 x < 0

(19)

And we consider the spacings s between adjacent eigenvalues (sorted in de-
scending order):

si = |λi − λi+1| (20)

for i ∈ S = {1, . . . , N − 1}.
Simulations show that our spacings are not iid, as we would have guessed

since the elements of our band diagonal matrices are not iid (arbitrarily only
the lower triangular ones are).

But, more interestingly, in the case of large number of microstates, the spac-
ings in the bulk of the spectrum behave similarly, following very closely a 2-
Weibull Distribution so that we have:

P(si) ≈ b/a(si/a)b−1 exp(−(si/a)b) ∀i ∈ bulk. (21)
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Figure 13: Density function of a spacing in the bulk of the spectrum, and its
weibull estimate.

Work can be done to link this result with already existing random matrix
theory. Indeed, it would be interesting to compare the spectral behavior of our
matrices (non-symmetric band-diagonal real matrices, even if self-adjoint on the
hilbert space L2(π) ⊂ RN ) with the one of symmetric real matrices. For some
interesting info see [Liu, 2000] and [Timm, 2009].
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4 Discrete Time, General State Space

At the end of my internship, I tried to draw a parallel bewteen the spectral
properties found for CTMC or DTMC on finite state space and the ones of
DTMC on the general state space, which are widely used in MCMC algorithms
(see for example [Rosenthal, 2003]). Unfortunately I didn’t have the time to find
promising results. I will nonetheless give a little overview of markov operator
on general state space (in discrete time).

Let {Xn, n ∈ N} be a stochastic process defined on the general state space
(R,B) that evolves as follows:

∀xn ∈ N, A ∈ B, P(Xn+1 ∈ A|X0 = x0, . . . , Xn = xn) = P(Xn+1 ∈ A|Xn = xn) = P(xn, A).

Under this assumption {Xn, n ∈ N} is a DTMC on general state space and is
characterized by:

(1) an initial distribution p0 on (R,B)

(2) A conditional probability distribution P (x, ·) on (R,B) determined by a
function ρ : R× R→ R+ satisfying:

• for all x ∈ R
P (x,R) =

∫
R
ρ(x, dy) = 1

• for all x ∈ R, A ∈ B

P (x,A) =

∫
A

ρ(x, dy) ∈ (0, 1)

We consider the Hilbert space L2(π), space of π-measurable functions where
π is a probability measure on the measurable space (R,B):

L2(π) = {f : R→ R,
∫
π(dx)f(x)2 <∞}

P (x, ·) is an operator that acts:

1. on the set of probability measure on (R,B):

P : M(R,B) −→ M(R,B)
µ 7−→ µP =

∫
R µ(dx)P (x, ·)

2. on L2(π):
P : L2(π) −→ L2(π)

f 7−→ Pf =
∫
R P (·,dx)f(x)

L2(π) is equipped with the scalar product:

〈f, g〉 =

∫
π(dx)f(x)g(x), ∀(f, g) ∈ (L2(π))2

and the related norm:
||f ||2 = π(dx)f(x)2
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We define the operator norm as:

||P || = sup
f∈L2(π),||f ||>0

||Pf ||
||f ||

Jensen’s inequality tells us that, for all f ∈ L2,

(Pf)2 = (

∫
P (·,dx)f(x))2 ≤

∫
P (·,dx)f(x)2

Thus by π invariance,
||Pf ||2 ≤ ||f ||2

So, we have that ||P || ≤ 1. By the same reasoning that we used for DTMC
on discrete state space we finally find that ||P || = 1 with eigenvalue λ = 1 and
eigenfunction f1 = 1.

We assume that {Xn, n ∈ N} is π-reversible, for all A,B ∈ B∫
A

π(dx)P (x,B) =

∫
B

π(dx)P (x,A)

We have the following theorem:

Theorem 5. P π-reversible is equivalent to P self-adjoint

Proof. for all (f, g) ∈ (L2(π))2,

〈Pf, g〉 =

∫ ∫
π(dx)P (x,dy)f(y)g(x) =

∫ ∫
π(dx)P (x,dy)f(x)g(y) = 〈f, Pg〉

The spectrum of P is defined as

Sp(P ) := {λ ∈ R,∃f, Pf = λf}

We have that Sp(P ) ∈ [−1, 1], indeed let λ0 ∈ Sp(P ). There exists eigenfunction
f0 ∈ L2(π) such that

〈Pf0, Pf0〉 = λ20||f0||2

So,

|λ0| =
||Pf0||
||f0||

≤ 1

I did not study the spectral decomposition of {Xn, n ∈ N}, thus much re-
mains to be done!
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5 Conclusion

The spectral analysis of the continuous time markov process {X(t), t > 0} allows
to derive reliable statistics giving a good insight on the process of protein folding.

The spectral decomposition of {X(t), t > 0} allows indeed an interpretation
of the chain dynamics in terms of flux of probability mass between high density
regions.

Simulations tend to show that the presence of a spectral gap (with γ ≥ 7)
between the second and third eigenvalue of the transition rate matrix K support
a two-states approximation, as well as the importance of the structure of K on
the distribution of γ.

However, a better gap won’t necessarily yield a better two-states approxi-
mation.

Likewise, the two-state approximation of the time evolution of {X(t), t > 0}
we propose is not always valid.

Work could be done about knowing whether a higher order representation
(3 or 4 macrostates for example) of a protein dynamics is possible, as well as
pursuing the study of the parallels between spectral analysis of markov processes
on discrete and general state space.
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