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Abstract We characterize elementary equivalences and inclusions between von
Neumann regular real closed rings in terms of their boolean algebras of idempo-
tents, and prove that their theories are always decidable. We then show that, under
some hypotheses, the map sending an L-structure R to the L-structure of definable
functions from Rn to R preserves elementary inclusions and equivalences and gives
a structure with a decidable theory whenever R is decidable. We briefly consider
structures of definable functions satisfying an extra condition such as continuity.
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1 Introduction and notation

Let L be a first-order language. If R is an L-structure and n ∈ N, we consider
defL(Rn,R) the set of L-definable maps from Rn to R, which can be seen as an L-
structure via its inclusion in RRn

(the functions, constants and relations are defined
coordinate by coordinate). We show that, under appropriate hypotheses, the map
which sends R to defL(Rn,R) preserves elementary equivalences and inclusions,
and gives a decidable L-structure if R is decidable (corollary 4, proposition 4 and
corollary 5).
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The first of these results is proved when L contains the language of rings,
R is a real closed field and only the ring structure is considered on defL(Rn,R).
For this we use the representation of von Neumann regular commutative rings as
rings of global continuous sections of a sheaf to characterize elementary inclusions
between von Neumann regular real closed rings and to show that the first-order
theory of such a ring (in the language of rings) is always decidable (theorem 1).
By real closed rings we mean real closed rings in the sense of Schwartz (see [9]).

We then consider the L-structures of L-definable functions from Rn to R satis-
fying some additional property (the motivation here is given by the ring of contin-
uous definable functions, when R is a ring equipped with some topology). We get
a simple result concerning the preservation of elementary inclusions when both
structures are ω-saturated (proposition 5) and briefly mention the limits of the
method used in the proof.

We use the following conventions and notation throughout this paper: We will
not make any notational distinction between an L-structure and its underlying set,
LR := {0,1,+,−, ·} is the language of rings, LBA := {⊥,>,∧,¬} is the language
of boolean algebras, and “definable” will always mean definable with parameters.
If M is an L-structure, T hL(M) is the set of L-formulas without parameters which
are true in M. Similarly, if {Mi}i∈I is a collection of L-structures, T hL({Mi | i∈ I})
is the set of L-formulas without parameters which are true in every Mi, for i ∈ I.
If M is an L-structure and C is a set consisting of elements of M, of functions
defined on some finite cartesian power of M with values in M and of subsets of
some finite cartesian power of M, then L(C) denotes the language L expanded by
new constant symbols, function symbols and relation symbols for each element of
C, which are then interpreted in M by the element of C they represent.

If we want to make clear that an elementary inclusion or elementary equiva-
lence between M and N is meant in the language L, we write M ≺L N or M ≡L N.
Finally, if x̄ is a tuple, l(x̄) is the length of x̄.

2 Boolean algebras of definable subsets

Let L be a first-order language, A an L-structure and n∈N. We consider defL(A n)
the boolean algebra of definable subsets of A (which we identify with the boolean
algebra of L(A )-formulas modulo equivalence in A ). If B is another L-structure,
the well-knowed elementary invariants of boolean algebras (see [5]) give us that
defL(A n) and defL(Bn) are elementarily equivalent.
The goal of this section is to point out that the obvious generalisation to elemen-
tary inclusions still holds: If B is an elementary extension of A , then the map
sending the subset of A n defined by the formula φ(x1, . . . ,xn) to the subset of
Bn defined by φ(x1, . . . ,xn) is an elementary inclusion of boolean algebras from
defL(A n) to defL(Bn).

We only give a sketch of the proof since it is a direct consequence of a simple
extension of [5, Proposition 18.10]. If B is a boolean algebra then inv(B) denotes
its elementary invariant, and for b ∈ B, B � b denotes the boolean algebra {x ∈
B | x⊆ b}.

Proposition 1 Let A, B and C be boolean algebras with C subalgebra of A, and
assume there is an LBA-monomorphism f : C→ B such that for every c∈C inv(A �
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c) = inv(B � f (c)). Then A ≡ B in the language LBA(C) (where an element c ∈C
is interpreted in B by f (c)).

Proof We simply follow the proof of [5, Proposition 18.10]. We fix a finite tuple
c̄ ∈ C and replace it by the finite subalgebra it generates. We also replace A and
B by ω-saturated elementary extensions, and then use the same back-and-forth
argument as in [5, Proposition 18.10]. The only modification is that we take for
P the set of LBA-isomorphisms p : A0→ B0 where A0 is a finite substructure of A
and B0 is a finite substructure of B, such that c̄ is a substructure of A0, p extends
f � c̄ and inv(A � a) = inv(B � p(a)) for every a ∈ A0. ut

Corollary 1 If A and B are two L-structures such that A ≺L B then
defL(A n)≺ defL(Bn) as boolean algebras, for every n ∈ N.

3 Von Neumann regular real closed rings

We use the notions and notation introduced in [2] concerning sheaves of L-struc-
tures (see also [7]). However, we will also use some results of [1] on sheaves of
rings, where the definition of sheaves comes from [8], and is slightly weaker than
Comer and Macintyre’s (when their definition is written for the language of rings).
We present this weaker definition in the case of L-structures, and remark that the
main result in [2] still holds with this modified definition. Except for the different
definition, everything until and including corollary 3 can be found in [2] and [7].

Definition 1 A sheaf of L-structures is a triple (X ,S,π) where

1. X and S are topological spaces (we will always assume that X is non-empty);
2. π is a local homeomorphism from S onto X ;
3. Sx := π−1(x) is an L-structure for each x ∈ X ;
4. For each constant symbol c ∈ L the map from X to S that sends x ∈ X to the

interpretation of c in Sx is continuous;
5. For each n-ary function symbol f ∈ L the map from

⋃
x∈X (Sn

x) to S send-
ing (s1, . . . ,sn) ∈ Sn

x to the interpretation of f (s1, . . . ,sn) in Sx is continuous
(where

⋃
x∈X (Sn

x) is equipped with the topology induced by its inclusion in
(
⋃

x∈X Sx)n = Sn);
6. For each n-ary relation symbol R ∈ L, {(s1, . . . ,sn) ∈

⋃
x∈X (Sn

x) |
R(s1, . . . ,sn)} is open in

⋃
x∈X (Sn

x).

Remark 1 This definition coincides with the one given in [8] when L is the lan-
guage of rings (point 6 is easily checked for the equality), but is weaker than
Comer and Macintyre’s which requires the subset defined in condition 6 to be
clopen.

If N is open in X , a continuous section from N to S is a continuous map f : N→
S such that f (x) ∈ Sx for every x ∈ N. We denote by Γ (N,S) the set of continuous
sections from N to S. Remark that if x0 ∈ X and a ∈ Sx0 then there is an open N
of X containing x0 and f ∈ Γ (N,S) such that f (x0) = a: By definition there is
an open V of S such that a ∈ V , π(V ) is open in X and π � V : V → π(V ) is an
homeomorphism. In particular we can define a map f : π(V )→ S sending x∈ π(V )
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to the only s ∈ V such that π(s) = x. Taking N := π(V ), we have f ∈ Γ (N,S),
x0 ∈ N and f (x0) = a.

If θ(ū) is an L-formula, N is open in X and f̄ ∈ Γ (N,S)ū we define

‖θ( f̄ )‖N := {x ∈ N | Sx |= θ( f̄ (x))}.

We say that an L-theory T is positively model-complete if every L-formula (so
possibly with free variables) is equivalent modulo T to a positive existential for-
mula.

Lemma 1 Let (X ,S,π) be a sheaf of L-structures and let θ(ū) be an L-formula.
Let N be open in X and let f̄ ∈ Γ (N,S)ū.

1. If θ(ū) is positive existential then ‖θ( f̄ )‖N is open in N;
2. If T hL({Sx | x ∈ N}) is positively model-complete then ‖θ( f̄ )‖N is clopen in

N.

Proof 1. We first assume that θ(ū) is atomic, so θ( f̄ ) is R(t1( f̄ ), . . . , tn( f̄ )),
where R ∈ L is a relation symbol and t1, . . . , tn are L-terms. The result is then
a direct consequence of items 4, 5 and 6 in definition 1, and extends naturally
to the case of θ(ū) quantifier-free positive.
Assume now that θ(ū) is ∃v̄ τ(ū, v̄) where τ(ū, v̄) is quantifier-free positive. Let
x0 ∈ ‖∃v̄ τ( f̄ , v̄)‖N . Then there exists ā∈ (Sx0)

v̄ such that Sx0 |= τ( f̄ (x0), ā). As
observed before the lemma, there is then an open U in N and ḡ∈Γ (U,S)v̄ such
that ḡ(x0) = ā. Since τ(ū, v̄) is quantifier-free positive, ‖τ( f̄ , ḡ)‖U is open. But
it also contains x0 and is included in ‖∃v̄ τ( f̄ , v̄)‖N , which completes the proof.

2. Since T hL({Sx | x ∈ N}) is positively model-complete we can assume that
θ(ū) is positive existential, so ‖θ( f̄ )‖N is open in N.
Let τ(ū) be a positive existential formula such that T hL({Sx | x ∈ N}) `
∀ū (¬θ(ū)) ↔ τ(ū). Then N \ ‖θ( f̄ )‖N = ‖¬θ( f̄ )‖N = ‖τ( f̄ )‖N , which is
open by the first point of this lemma. ut

Let LB be any fixed language expanding the language LBA of boolean algebras
and assume that clopens(X), the set of clopen subsets of X , is an LB-structure. We
consider on Γ (X ,S) the predicates induced by the generalized product ∏x∈X Sx, as
introduced in [3] (see the second page of [2]):

Definition 2 1. An acceptable sequence is a sequence
〈Φ(X1, . . . ,Xm),θ1(z̄), . . . ,θm(z̄)〉 where m is in N, Φ is an LB-formula with m
free variables and θ1(z̄), . . . ,θm(z̄) are L-formulas with the same free variables
z̄.

2. The language Lgp (for “generalized product”) consists of all l(z̄)-ary relations
Rξ for all acceptable sequences
ξ := 〈Φ(X1, . . . ,Xm),θ1(z̄), . . . ,θm(z̄)〉. Rξ is interpreted in Γ (X ,S) by

{ f̄ ∈ Γ (X ,S)z̄ | clopens(X) |= Φ(‖θ1( f̄ )‖X , . . . ,‖θm( f̄ )‖X )}.

We recall a special case of [2, Theorem 1.1] and its consequences (see [2, Theorem
1.3] and [2, Theorem 1.5]; we also use property (C) defined on the second page of
[2]):
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Proposition 2 There is an effective procedure which associates to any Lgp-for-
mula σ(z̄) an acceptable sequence 〈Φ(X1, . . . ,Xm),θ1(z̄), . . . ,θm(z̄)〉 such that the
following holds: For every sheaf of L-structures (X ,S,π) with X boolean topo-
logical space and ThL({Sx}x∈X ) positively model-complete, every LB-structure on
clopens(X) (recall that LB has been previously fixed) and every f̄ ∈ Γ (X ,S)z̄,

Γ (X ,S) |= σ( f̄ )

if and only if

clopens(X) |= Φ(‖θ1( f̄ )‖X , . . . ,‖θm( f̄ )‖X ).

Proof Comer’s proof in [2] works perfectly, even with our weaker definition, be-
cause every set of the form ‖θ(ḡ)‖X is clopen in X , for every L-formula θ(z̄) and
every ḡ ∈ Γ (X ,S)z̄ (by lemma 1). ut

Corollary 2 Let S = (X ,S,π), S ′ = (X ′,S′,π ′) be sheaves of L-structures such
that for every x ∈ X and y ∈ X ′ Sx ≡L S′y and their common theory is posi-
tively model-complete. Suppose X and X ′ are boolean spaces and clopens(X) ≡
clopens(X ′) in LB. Then Γ (X ,S)≡ Γ (X ′,S′) in Lgp.

Corollary 3 Let (X ,S,π) be a sheaf of L-structures with ThL({Sx}x∈X ) positively
model-complete and X boolean, and such that the theories ThL({Sx}x∈X ) and
T hLB(clopens(X)) are both decidable. Then T hLgp(Γ (X ,S)) is decidable.

While corollary 2 gives assumptions under which we get elementary equivalence,
we need to be a bit more precise to deal with the case of elementary inclusions:
Let S1 = (X1,S1,π1), S2 = (X2,S2,π2) be sheaves of L-structures and assume we
have a continuous map p : X2 → X1 such that S1p(x) is a substructure of S2x for
every x ∈ X2. It induces a map

p∗ : Γ (X1,S1)→ Γ (X2,S2)
f 7→ f ◦ p.

Using that Γ (Xi,Si) is an L-substructure of ∏x∈Xi Six we easily check that p∗ is an
L-morphism and that p∗ is an L-monomorphism whenever p is surjective. Note
that if p is surjective it induces an embedding of boolean algebras:

pBA : clopens(X1)→ clopens(X2)
U 7→ p−1(U).

Proposition 3 Let S1 = (X1,S1,π1), S2 = (X2,S2,π2) be sheaves of L-structures
such that Th({S1x}x∈X1) = Th({S2x}x∈X2) is positively model-complete and X1, X2
are boolean topological spaces. Assume that we have a surjective continuous map
p : X2 → X1 such that S1p(x) ≺L S2x for every x ∈ X2 and pBA is an elementary
embedding in LB.
Then p∗ : Γ (X1,S1)→ Γ (X2,S2) is elementary in the language Lgp.

Proof Let σ(z̄) be an Lgp-formula with free variables z̄ and let
〈Φ(X1, . . . ,Xm),θ1(z̄), . . . ,θm(z̄)〉 be the acceptable sequence associated to it by
proposition 2. Let f̄ ∈ Γ (X1,S1)z̄.
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Claim: For every L-formula θ(z̄) we have pBA(‖θ( f̄ )‖X1
) = ‖θ(p∗( f̄ ))‖X2

.
Let x ∈ X2. We have the following sequence of equivalences:

x ∈ pBA(‖θ( f̄ )‖X1
)⇔ p(x) ∈ ‖θ( f̄ )‖X1

⇔ S1p(x) |= θ( f̄ (p(x)))

⇔ S2x |= θ( f̄ (p(x))),

which proves the claim.

Using the claim we get

clopens(X1) |= Φ(‖θ1( f̄ )‖X1
, . . . ,‖θm( f̄ )‖X1

)
if and only if

clopens(X2) |= Φ(pBA(‖θ1( f̄ )‖X1
), . . . , pBA(‖θm( f̄ )‖X1

))
if and only if

clopens(X2) |= Φ(‖θ1(p∗( f̄ ))‖X2
, . . . ,‖θm(p∗( f̄ ))‖X2

).

And this proves the result, by proposition 2. ut

We now apply these results to von Neumann regular real closed rings. For this we
recall a few notions and a lemma, taken from [1], section 2:

We only consider commutative rings with 1. If R is a ring, we denote by BR
the boolean algebra of its idempotents (endowed with the following operations:
a∧b := ab, a∨b := a+b−ab and the complement of a is 1−a).
If e ∈ BR then R = Re×R(1− e), Re ∼= R/(1− e), and Re and R(1− e) are rings
with respective units e and 1− e.

To fix the notation, we denote as follows the Stone duality for a boolean algebra
B: XB is the boolean topological space of maximal ideals of B, or equivalently
of morphisms from B onto {⊥,>}, and an element b of B is identified with the
continuous map defined on XB by b(x) := x(b).

Let R be a ring, B := BR and let XB be the Stone space of B. For any x ∈ XB the
stalk Rx of R at x is defined to be the direct limit, over elements e of B such that
e 6∈ x, of the rings Re. They form an inductive system of (non-injective) morphisms
of rings since for e1,e2 ∈ B we have a morphism λe1e2 : Re1→ Re1e2, ae1 7→ ae1e2
(and e1e2 6∈ x, using that x is maximal).
We get in this way a sheaf of rings (XB,S,π), where Sx = Rx for every x ∈ XB, and
R is the ring of continuous global sections Γ (XB,S) (all this can be found in [1],
section 2 on central idempotents).

Recall that a commutative ring R is von Neumann regular if for every a ∈ R
there exists a∗ ∈ R such that a2a∗ = a.

Lemma 2 Assume that R is von Neumann regular and let x ∈ XB. We denote by
(x) the ideal of R generated by the elements of x. Then

1. (x) =
⋃

f∈x R f and (x) is a maximal ideal of R;
2. Rx ∼= R/(x). In particular Rx is a field.

Proof 1. The inclusion from right to left is clear. Let a∈ (x), a = a1 f1 + · · ·+an fn
with a1, . . . ,an ∈ R and f1, . . . , fn ∈ x. Let f = f1∨·· ·∨ fn. f ∈ x since x is an
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ideal and a∈ R f , indeed a = (a1 f1 + · · ·+an fn) f because fi f = fi∧( f1∨·· ·∨
fn) = fi.
We check that (x) is maximal. Let a 6∈ x. Then aa∗ 6∈ x (otherwise a = a(aa∗)∈
x, a contradiction). But aa∗ is an idempotent (recall that R is commutative), so
1−aa∗ ∈ x since x is a maximal ideal of BR (and thus for every e ∈ BR, either
e∈ x or ¬e = 1−e∈ x). This gives 1 = aa∗+(1−aa∗) is in the ideal generated
by a and (x), so (x) is a maximal ideal.

2. Let e 6∈ x. Since Re ∼= R/(1− e) and 1− e ∈ x, we have a canonical mor-
phism µe : Re→ R/(x) satisfying, for e1,e2 6∈ x, µe1 = µe2 ◦λe1e2 , and we have
lim−→e6∈x

Re = lim−→e6∈x
R/(1−e) = lim−→ f∈x

R/( f ). The universal property of the di-
rect limit produces then a morphism of rings from lim−→e 6∈x

Re to R/(x), which
is explicitly given by

lim−→ f∈x
R/( f )→ R/(x)

the class of a in some R/( f ) 7→ a/(x).

This map is clearly surjective. We check that it is injective: Suppose a/(x) =
0 where a in R/( f ) for some f ∈ x. Then a ∈ ( f1, . . . , fn) for some n ∈ N
and f1, . . . , fn ∈ x, which gives a ∈ ( f1 ∨ ·· · ∨ fn), and therefore a = 0 in
lim−→ f∈x

R/( f ) since f1∨·· ·∨ fn ∈ x. ut

The following theorem characterizes elementary equivalences and inclusions of
von Neumann regular real closed rings in terms of their boolean algebras of idem-
potents.

Theorem 1 Let A1, A2 be two von Neumann regular real closed rings and let B1,
B2 be their respective boolean algebras of idempotents. Then

1. T hLR(A1) is decidable;
2. A1 ≡ A2 as rings if and only if B1 ≡ B2 as boolean algebras;
3. A1 ≺ A2 as rings if and only if A1 ⊆ A2 as rings and B1 ≺ B2 as boolean

algebras.

Proof First note that the two left to right implications in (2) and (3) are clear
since Bi is definable without parameters in Ai for i = 1,2. Let S1 = (XB1 ,S1,π1),
S2 = (XB2 ,S2,π2) be sheaves such that Ai = Γ (XBi ,Si) for i = 1,2.

1. We apply corollary 3: S1x = A1/(x) for every x ∈ XB1 by lemma 2, and is
a real closed field as quotient of a real closed ring by a maximal ideal (see
point (d) of the definition of real closed rings in the introduction of [9]). So
ThLR({S1x | x ∈ XB1}) is the theory of real closed fields, which is decidable
and positively model-complete. T hLBA(XB1) is determined by the elementary
invariant ξ of XB1 , i.e. T hLBA(XB1) is the theory T (ξ ) of boolean algebras with
elementary invariant ξ (see [5, Proposition 18.10]). Since T (ξ ) has a recursive
set of axioms by [5, 18.8], it is decidable and the decidability of T hLR(A1)
follows by corollary 3.

2. By lemma 2, the stalks of S1, S2 are quotients of A1, A2 by maximal ideals,
and are thus real closed fields since A1 and A2 are real closed rings. It proves
that the theories of the stalks are the theory of real closed fields, which is
positively model-complete. We can then apply corollary 2.
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3. Assume now that A1 ⊆ A2 as rings and B1 ≺ B2 as boolean algebras. Let
Xi := XBi for i = 1,2. We need to make more precise the terminology intro-
duced in lemma 2: If C is a subset of A1, (C)A1 is the ideal generated by C in
A1 and (C)A2 is the ideal generated by C in A2.
Let p : X2→ X1, p(x) = x∩B1. p is continuous and surjective. For p to induce
an embedding p∗ from Γ (X1,S1) into Γ (X2,S2), we first have to find an em-
bedding of A1 p(x) = A1/(x∩B1)A1 into A2x = A2/(x)A2 , for every x ∈ X2.
Claim: (x∩B1)A1 = (x)A2 ∩A1.
We clearly have (x∩B1)A1 ⊆ (x)A2 ∩A1. But x∩B1 is a maximal ideal of B1.
Applying lemma 2, we get that (x∩B1)A1 is a maximal ideal of A1, which im-
plies (x∩B1)A1 = (x)A2 ∩A1.

The claim gives a canonical embedding of the stalks

A1/(x∩B1)A1 = A1/((x)A2 ∩A1)→ A2/(x)A2
a/((x)A2 ∩A1) 7→ a/(x)A2 ,

(1)

for every x ∈ X2.
In particular, p then induces an embedding p∗ from Γ (X1,S1) into Γ (X2,S2)
which coincides with the inclusion A1 ⊆ A2 (the verification is straightforward
using (1)).
Moreover pBA : clopens(X1)→ clopens(X2) is exactly the inclusion B1 ⊆ B2
so is elementary by assumption. Proposition 3 will give the desired result if
we only check that the inclusion in (1) is elementary, but it is the case since
both A1 p(x) and A2x are real closed fields (as quotients of real closed rings by
maximal ideals). ut

Remark 2 1. The same result holds (using the same arguments) for von Neumann
regular rings in which every monic polynomial has a root, because the stalks
will be algebraically closed fields, and the theory of algebraically closed fields
is positively model-complete. In particular the theory of such rings without
minimal idempotents is model-complete since the theory of atomless boolean
algebras is model-complete (and is decidable since the theory of algebraically
closed fields is decidable). We recover in this way parts of Theorems 3 and 4
of [6].

2. Since a real closed ring is an f -ring and its order relation is definable in the
language of rings we also recover the fact that the theory of von Neumann
regular real closed f -rings without minimal idempotents is model-complete
and decidable (see [7], Section 6, and [12], Theorem 4.17), once again because
the theory of atomless boolean algebras is model-complete.

4 L-structures of definable functions

4.1 The case of real closed rings

Definition 3 Let L be a first-order language containing the language of rings, R
an L-structure and n ∈ N. We denote by defL(Rn,R) the structure of definable L-
functions from Rn to R.
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(Remark that if R ≺L S we have a natural inclusion of rings from defL(Rn,R) to
defL(Sn,S).)

Corollary 4 1. Let L1 ⊆ L2 be expansions of the language of rings and let Ri be
a real closed field which is an Li-structure for i = 1,2. Suppose R1 ≺L1 R2.
Then for every n ∈ N, defL1(R

n
1,R1)≺ defL2(R

n
2,R2) as rings.

Moreover T hLR(defL1(R
n
1,R1)) is decidable.

2. In particular:
(a) If R ⊆ S are real closed fields and n ∈ N then defLR(Rn,R) ≺ defLR(Sn,S)

as rings and T hLR(defLR(Rn,R)) is decidable.
(b) If R is a real closed field with an exponential in the language L(exp)

where L is an expansion of the language of rings, then defL(Rn,R) ≺
defL(exp)(Rn,R) as rings and by (a) the theory T hLR(defL(exp)(Rn,R)) is
decidable.

Proof We only prove the first part, since the second follows from it. The rings
defL1(R

n
1,R1) and defL2(R

n
2,R2) are real closed (see [11], or [10], example 10.18

and section 12) and are von Neumann regular. We can then apply theorem 1. Let
B1 := defL1(R

n
1) be the boolean algebra of idempotents of defL1(R

n
1,R1), and B2 :=

defL2(R
n
2) be the boolean algebra of idempotents of defL2(R

n
2,R2). We only have

to check that the natural inclusion B1→ B2 is elementary in LBA. By proposition
1, it is enough to check that for every c ∈ B1, inv(B1 � c) = inv(B2 � c). From the
definition of the elementary invariant we easily see that inv(B1 � c) = (0,0,α1)
and inv(B2 � c) = (0,0,α2), where αi is the minimum of ω and the number of
atoms of Bi � c, for i = 1,2. We have α1 = α2 since R1 ≺L1 R2.

The decidability is a direct consequence of theorem 1 (1). ut

Remark 3 Let χ(x1, . . . ,xn) be an L-formula with parameters in R and let
defL(χ(Rn),R) be the ring of L-definable functions from χ(Rn) to R. It is possible
to apply the previous results to defL(χ(Rn),R), since it is definable in defL(Rn,R),
using the function 1χ(Rn).

4.2 General L-structures

Let L be a first-order language and let R be an L-structure. Then defL(Rn,R) is
naturally an L-structure (where the interpretations of the function, constant and
relation symbols are defined coordinate by coordinate, i.e. defL(Rn,R) is an L-
substructure of RRn

). To deal with this new language we need an additional as-
sumption and use a straightforward adaptation of the proof of [3, Theorem 3.1]:

Proposition 4 Let T be an L-theory with definable Skolem functions, and let R
be a model of T . There is a procedure which associates to any L-formula σ(z̄) an
LBA-formula Φ(X1, . . . ,Xm) and L-formulas θ1(z̄), . . . ,θm(z̄) such that for every
L-structure R and every f̄ ∈ defL(Rn,R)z̄:

defL(Rn,R) |= σ( f̄ )

if and only if

defL(Rn) |= Φ(‖θ1( f̄ )‖R, . . . ,‖θm( f̄ )‖R),
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where ‖θi( f̄ )‖R = {x̄ ∈ Rn | R |= θi( f̄ (x̄))}.
This procedure is effective if there is an effective way to associate a definable
Skolem function to any given existential formula. In this case, if T hL(R) is decid-
able then T hL(defL(Rn,R)) is decidable.

Proof The first part is obtained with the same argument as [3, Theorem 3.1],
which we reproduce here for clarity. We proceed by induction on σ :

– σ(z̄) is atomic, of the form R(t1(z̄), . . . , tk(z̄)), where R is a relation symbol in
L and the ti are L-terms. We take X1 => for Φ(X1) and R(t1(z̄), . . . , tk(z̄)) for
θ1.

– σ(z̄) is ¬σ ′(z̄). By induction we get an LBA-formula Φ ′(X1, . . . ,Xm) and L-
formulas θ ′1(z̄), . . . ,θ

′
m(z̄) associated to σ ′, which satisfy the conclusion of the

proposition. We then take Φ(X1, . . . ,Xm) = ¬Φ ′(X1, . . . ,Xm) and θi(z̄) = θ ′i (z̄)
for i = 1, . . . ,m.

– σ(z̄) is σ1(z̄)∧σ2(z̄). We obtain, by induction and for i = 1,2, an LBA-formula
Φi(X1, . . . ,Xmi) and L-formulas θi1(z̄), . . . ,θimi(z̄) associated to σi, which sat-
isfy the conclusion of the proposition. We then define

Φ(X1, . . . ,Xm1+m2) = Φ1(X1, . . . ,Xm1)∧Φ2(Xm1+1, . . . ,Xm1+m2), and

θ1(z̄) = θ11(z̄), . . . ,θm1(z̄) = θ1m1(z̄),

θm1+1(z̄) = θ21(z̄), . . . ,θm1+m2(z̄) = θ2m2(z̄).

– σ(z̄) is ∃x σ ′(x, z̄). By induction there is an LBA-formula Φ ′(X1, . . . ,Xm) and
there are L-formulas θ ′1(x, z̄), . . . ,θ

′
m(x, z̄) associated to σ ′, which satisfy the

conclusion of the proposition.
Fact: We can assume that the formulas θ ′i form a partition, i.e.

∀1≤ i 6= j ≤ m ` ∀x, z̄ ¬(θ ′i (x, z̄)∧θ
′
j(x, z̄)),

` ∀x, z̄
m∨

i=1

θ
′
i (x, z̄).

Proof of the fact: For ε̄ ∈ { /0,¬}m, let θ ′
ε̄
(x, z̄) be

∧m
i=1 εiθ

′
i (x, z̄), where /0θ ′i

is θ ′i and ¬θ ′i is ¬θ ′i . The formulas θ ′
ε̄

are the atoms of the finite boolean
algebra of formulas generated by θ ′1, . . . ,θ

′
m, they form a partition, and each

formula θ ′i can be expressed (as a conjunction) in terms of the formulas θ ′
ε̄
.

Upon replacing the θ ′i by the θ ′
ε̄

and modifying Φ ′ accordingly, we can assume
that the θ ′i form a partition, which proves the fact.

We take for Φ(X1, . . . ,Xm) the following formula

∃Y1, . . . ,Ym

m∧
i=1

Yi ⊆ Xi∧ (
m⋃

i=1

Yi =>)∧
∧

1≤i 6= j≤m

(Yi∩Yj =⊥)∧Φ
′(Y1, . . . ,Ym),

and for θi(z̄) the formula ∃x θ ′i (x, z̄), for i = 1, . . . ,m. We check that these for-
mulas have the required properties:
“⇒” Assume defL(Rn,R) |= ∃x σ ′(x, f̄ ), i.e. there is g ∈ defL(Rn,R) such
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that defL(Rn,R) |= σ ′(g, f̄ ). By induction hypothesis we have defL(Rn) |=
Φ ′(‖θ ′1(g, f̄ )‖R, . . . ,‖θ ′(g, f̄ )‖R). Using that the θ ′i form a partition we get

m⋃
i=1

‖θ ′i (g, f̄ )‖R = Rn and
∧

1≤i 6= j≤m

(‖θ ′i (g, f̄ )‖R∩‖θ
′
j(g, f̄ )‖R = /0).

We then take Yi = ‖θ ′i (g, f̄ )‖R, which is possible since ‖θ ′i (g, f̄ )‖R ∈ defL(Rn).
“⇐” Assume

defL(Rn) |=∃Y1, . . . ,Ym

m∧
i=1

Yi ⊆ ‖∃x θ
′
i (x, f̄ )‖R∧(

m⋃
i=1

Yi =>)∧

∧
1≤i 6= j≤m

(Yi∩Yj =⊥)∧Φ
′(Y1, . . . ,Ym),

and let Y1, . . . ,Yn be the definable subsets whose existence is asserted by this
formula.
For 1≤ i≤m let gi(z̄) be a definable Skolem function for the formula θ ′i (x, z̄).
We define a function g from Rn to R by g(ā) = gi(ā) where i is the unique
element of {1, . . . ,m} such that ā ∈ Yi. The function g is in defL(Rn,R) and,
using that the ‖θ ′i (g, f̄ )‖R as well as the Yi form a partition of Rn, we ob-
tain Yi = ‖θ ′i (g, f̄ )‖R for every i = 1, . . . ,m, from which follows defL(Rn) |=
Φ(‖θ ′1(g, f̄ )‖R, . . . ,‖θ ′m(g, f̄ )‖R), i.e. defL(Rn,R) |= σ(g, f̄ ).

For the second part of the proposition, in case there is an effective way to as-
sociate a definable Skolem function to any given existential formula: we know
that T hLBA(defL(Rn)) is always decidable. Indeed, if ξ := inv(defL(Rn)) then by
[5, Proposition 18.10] T hLBA(defL(Rn)) is T (ξ ) the theory of boolean algebras
with elementary invariant ξ , which has a recursive set of axioms (see [5, 18.8]),
so is decidable. Now if σ is an L-formula without free variables, the formulas
θi associated to it by the first part of the proposition are without free variables,
so ‖θi‖R ∈ {⊥,>}, and (‖θ1‖R, . . . ,‖θm‖R) = ε̄ ∈ {⊥,>}m. If T hL(R) is decid-
able then ‖θi‖R = > is decidable (it is equivalent to T hL(R) ` θi), so there is
an algorithm to decide (‖θ1‖R, . . . ,‖θm‖R) = ε̄ , and then T hL(def(Rn,R)) ` σ is
equivalent to T (ξ ) `Φ(ε̄). ut

Corollary 5 Let R and S be models of an L-theory with definable Skolem func-
tions and assume R ≺L S, respectively R ≡L S. Then defL(Rn,R) ≺L defL(Sn,S),
respectively defL(Rn,R)≡L defL(Sn,S), for every n ∈ N.

Proof We only prove the first part of the corollary. Since R ≺L S, the natural in-
clusion λ : defL(Rn) → defL(Sn) is elementary by corollary 1. Let σ(z̄) be an
L-formula, and let f̄ ∈ defL(Rn,R)z̄. Applying proposition 4 and the fact that λ

is elementary with λ (‖θ( f̄ )‖R) = ‖θ( f̄ )‖S for every L-formula θ(x̄), we succes-
sively get

defL(Rn,R) |= σ( f̄ )⇔ defL(Rn) |= Φ(‖θ1( f̄ )‖R, . . . ,‖θm( f̄ )‖R)
⇔ defL(Sn) |= Φ(λ (‖θ1( f̄ )‖R), . . . ,λ (‖θm( f̄ )‖R))
⇔ defL(Sn) |= Φ(‖θ1( f̄ )‖S, . . . ,‖θm( f̄ )‖S)
⇔ defL(Sn,S) |= σ( f̄ ).

ut
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5 Continuous semi-algebraic functions

We can also try to get results similar to those obtained in corollaries 4 and 5, but for
structures consisting of definable functions satisfying some additional property P0
(the most natural one, which motivates this section, is probably continuity when
R is equipped with some topology). We present here a very partial result, using
infinitary languages, when both structures are ω-saturated.

Let L be a first-order language. To keep our arguments simple, we assume that
L only contains relation symbols (replacing, if necessary, every k-ary function
symbol in L by a k + 1-ary relation symbol corresponding to the graph of the
function).

Let n ∈ N, let F be a new n-ary function symbol and let P0(F) be a first-order
L(F)-formula. If S is an L-structure, we define

P0(defL(Sn,S)) := { f ∈ defL(Sn,S) | S |= P0( f )}.

We then define the language L(P) := L∪{P}, where P is a new unary relation sym-
bol, and turn def(Sn,S) into an LP-structure by interpreting P by P0(defL(Sn,S)).

We use the following convention: Suppose Ḡ is a tuple of new n-ary function
symbols and ψ is an L(Ḡ)-formula. We write ψ(Ḡ) instead of ψ if we want to
make explicit the use of the symbols Ḡ in ψ . In this case, if S is an L-structure and
ḡ is a tuple of functions from Sn to S of the same length as Ḡ, then ψ(ḡ) means
that ψ is interpreted in S using the functions ḡ as the interpretation of the symbols
Ḡ.

Let n∈N and let {φi(x̄,y, z̄i)}i∈I be the list of all L-formulas with at least x̄ and
y as free variables, with l(x̄) = n.

Lemma 3 Let S1 be an L-structure. Let f̄ ∈ defL(S1
n,S1) and let ā ∈ S1 be the

elements of S1 used to define f̄ . Let ψ(ū, v̄) be an L(P)-formula with v̄ of length
l ∈ N∪ {0}. Then there is an L(Ḡ)∞ω -formula ψ∗(ā, Ḡ), where Ḡ is a tuple of
length l of new n-ary function symbols, such that for every L-structure S2 such
that S1 ≺L S2 and every ḡ ∈ defL(S2

n,S2):

defL(S2
n,S2) |= ψ( f̄ , ḡ)⇔ S2 |= ψ

∗(ā, ḡ),

where in the right hand side, the tuple ḡ is used as a tuple of n-ary functions
interpreting Ḡ in S2.

Proof We proceed by induction on the formula ψ . We use f̄ as a tuple of n-ary
function symbols in S2, which we can do since the elements of f̄ are definable in
S with parameters ā.

– ψ(ū, v̄) is atomic of the form R(ū, v̄), where R is a relation symbol in L (recall
that L only contains relation symbols). Then ψ∗(ā, Ḡ) is

∀x̄, ȳ, z̄ (
l( f̄ )∧
i=1

fi(x̄) = yi∧
l∧

i=1

Gi(x̄) = zi)→ R(ȳ, z̄).

– ψ(ū, v̄) is P(ui). Then ψ∗(ā, Ḡ) is P0( fi).
– ψ(ū, v̄) is P(vi). Then ψ∗(ā, Ḡ) is P0(Gi).
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– The negation and conjunction cases are clear by induction.
– ψ(ū, v̄) is ∃w ψ1(ū, v̄,w). By induction we have a formula ψ∗1 (ā, Ḡ,H) asso-

ciated to ψ1 (H is another new n-ary function symbol). We use the following
notation: If φi(x̄,y, s̄) is an L-formula with parameters s̄ ∈ S2 which defines
the graph of a function from S2

n to S2, we denote this function by fφi(x̄,y,s̄).
A straightforward verification now shows that the following formula ψ∗(ā, Ḡ)
has the required property:∨

i∈I

{
∃z̄i “φi(x̄,y, z̄i) defines a total n-ary function”∧ψ

∗
1 (ā, Ḡ, fφi(x̄,y,z̄i))

}
.

ut

Remark 4 The same result also holds if P0(F) or ψ are L∞ω -formulas.

We deduce

Proposition 5 Let n ∈ N and let S1 ≺L S2 be two ω-saturated L-structures. Then
defL(S1

n,S1)≺L(P) defL(S2
n,S2). In particular, if S1 and S2 are ordered structures

and the order is L-definable in the same way in S1 and S2 then cdef(S1
n,S1) ≺L

cdef(S2
n,S2), where cdef denotes the set of continuous definable functions.

Proof From the ω-saturation we get S1 ≡∞ω S2 in L∪{ā} for every finite tuple
ā ∈ S1 (see [4, exercise 8 p. 488]). We then apply lemma 3 for every L(P)-formula
ψ( f̄ ) with parameters f̄ ∈ defL(Sn

1,S1).
For the second part of the statement, we just have to take for P0(F) the L-formula
“F is continuous”. Then cdef(Sn

i ,Si) becomes L(P)-definable in def(Sn
i ,Si). ut

Unfortunately, the method used to get proposition 5 cannot be obviously extended
to the general case of (non-necessarily ω-saturated) L-structures, not even when
these L-structures are real closed fields:

First note that lemma 3 can clearly be extended to the case of the language
L∪{P1, . . . ,Pm}, where P1, . . . ,Pm are obtained in the same way as P. In particular,
if we take P1(F) to be “F is continuous” and P2(F) to be “F is constant”, we get
the following extension of proposition 5:

Proposition 6 Let n ∈ N and let S1 ≺L S2 be two ω-saturated ordered struc-
tures, such that the order is L-definable in the same way in S1 and S2. Then
cdef(S1

n,S1) ≺L(C) cdef(S2
n,S2), where C is a new unary relation symbol inter-

preted in both structures by the set of constant functions.

But a result of Tressl (as yet unpublished) shows that if S is a real closed field,
then the set

N(S) := { f ∈ cdef(S,S) | f is constant and its value is in N}

is definable in cdef(S,S) in the language L(C).
It follows that if S1 is an archimedean real closed field and S2 is a non-archimedean
real closed field such that S1 ≺ S2, then cdef(S1,S1) 6≺ cdef(S2,S2) in L(C) (N(S1)
is cofinal in CS1 , but N(S2) is not cofinal in CS2).
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