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Abstract

Special groups are an axiomatisation of the algebraic theory of
quadratic forms over fields. It is known that any finite reduced spe-
cial group is the special group of some field. We show that any special
group that is the projective limit of a projective system of finite re-
duced special groups is also the special group of some field.

1 Introduction

The theory of special groups is an axiomatisation of the algebraic theory of
quadratic forms, introduced by Dickmann and Miraglia (see [5]). The class of
special groups, together with its morphisms, forms a category. As for other
such axiomatisations, the main examples of special groups are provided by
fields, in this case by applying the special group functor, which associates to
each field F a special group G(F ) describing the theory of quadratic forms
over F .

The category of special groups is equivalent to that of abstract Witt
rings via covariant functors, while the category of reduced special groups is
equivalent, via the restriction of the same covariant functors, to the category
of reduced abstract Witt rings (see [5, 1.25 and 1.26] ; recall that the special
group of a field F is reduced if and only if F is formally real and Pythagorean).
The category of reduced special groups is also equivalent, via contravariant
functors, to the category of abstract spaces of orderings (see [5, Chapter 3]).

The question whether it is possible to realize every (reduced) special
group as the special group of some (formally real, Pythagorean) field is still
open, but the case of finite reduced special groups (actually of reduced special
groups of finite chain length) has been positively answered by the combina-
tion of two results of Kula and Marshall:
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In [11], and building on techniques introduced in the field case by Bröcker
in [3], Kula showed that the product of two finite special groups of (formally
real, Pythagorean) fields is still the special group of some (formally real,
Pythagorean) field, and in [15], Marshall showed that every finite reduced
special group can be constructed from the special group of any real closed
field by applying a finite number of times the operations of product and ex-
tension (Marshall’s result is actually stated and proved for abstract spaces
of orderings). Since the extension of the special group of a (formally real,
Pythagorean) field is still the special group of a (formally real, Pythagorean)
field, it shows that every finite reduced special group (or reduced special
group of finite chain length) is realized as the special group of a field.

After finite reduced special groups, the simplest objects to consider are
probably projective limits of finite reduced special groups, i.e. profinite re-
duced special groups. They have already been studied in several publications,
such as [1], [13], [14], and more notably in [12] where the question of the re-
alization of these special groups by fields is considered and where it is shown
that every profinite reduced special group is isomorphic to a quotient of the
reduced special group of some field ([12, Corollary 4.7]).

In this paper, we improve on this result by showing that every profinite
reduced special group is isomorphic to the special group of some (necessarily
formally real and Pythagorean) field.

Both authors wish to thank the referee for many detailed and helpful
comments.

2 Preliminaries

We will make repeated use of the following general notion

Definition 2.1 Let A,B,A′, B′ be objects in a category C, and let λ : A →
B, λ′ : A′ → B′ be C-morphisms. Then λ, λ′ are said to be naturally
identified (in symbols, λ ∼= λ′) if and only if there are C-isomorphisms
iA : A→ A′, iB : B → B′ such that the following diagram

A
iA //

λ
��

A′

λ′

��
B

iB // B′

commutes. In this case, we also say that λ and λ′ are naturally identified
via iA, iB.
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2.1 On special groups

We assume some familiarity with the theory of special groups, as presented
in [5], and only introduce the following notation:
If G is a special group, Ssat(G) denotes the poset of saturated subgroups
of G, ordered by inclusion. We recall that if ∆ ∈ Ssat(G), then G/∆ is a
reduced special group if and only if ∆ ( G, if and only if −1 /∈ ∆.

Definition 2.2 A profinite reduced special group is the projective limit of a
projective system of finite reduced special groups.

If (G′i, f
′
ij)i≤j∈I is a projective system of finite reduced special groups, where

(I,≤) is a downward directed poset, and if G is the projective limit of this
system, the fact that G is indeed a special group (with the structure induced
by its inclusion in the product

∏
i∈I G

′
i) follows immediately from [6, Theorem

3.24]. Moreover, as proved in [13, Proposition 1.9.11], it is always possible to
describe G as the projective limit of a projective system (Gi, fij)i≤j∈I having
the properties

1. For every i ∈ I, Gi is G/∆i with ∆i saturated subgroup of G of finite
index;

2. For every i ≤ j ∈ I, ∆i ⊆ ∆j and fij is the canonical projection of
special groups induced by this inclusion.

We briefly sketch the argument: Let ι : G ↪→
∏

j∈I G
′
j be the canonical

embedding given by the definition of projective limit, and let πi :
∏

j∈I G
′
j →

G′i be the canonical projection. We define ∆i := ker(πi ◦ ι), Gi := G/∆i

and, for i ≤ j ∈ I, fij to be the canonical projection induced by ∆i ⊆ ∆j.
The system (Gi, fij)i≤j∈I is a projective system, whose projective limit is
isomorphic to G, via the map g ∈ G 7→ (g.∆i)i∈I ∈ lim

←−
(G/∆i, fij)i≤j∈I .

Remark 2.3 If M = (Mi, fij)i≤j∈I is any projective system, and if i′ ∈ I,
by restricting this system to the set I ′ := {i ∈ I | i ≤ i′} we obtain a new
system

M′ := (Mi, fij)i≤j∈I′ .

Since I ′ is coinitial in I, M and M′ have isomorphic projective limits, and
M′ possesses the following extra property

3. The index set of the projective system has a maximum element.

Definition 2.4 We call adequate a projective system of special groups that
satisfies conditions 1, 2 and 3 above.
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We will adhere to the following convention throughout this paper: Let (I,≤)
be a downward directed poset. If (I,≤) has a maximum element, we will
denote it by >, and if (I,≤) has a minimum element (which happens for
instance if I is finite), we will denote it by ⊥.

Let G0, G1 be abstract groups and denote by π0 : G0 × G1 � G0 :
(g0, g1) 7→ g0, π1 : G0 × G1 � G1 : (g0, g1) 7→ g1 the canonical projections
and by ι0 : G0 � G0 × G1 : g0 7→ (g0, 1), ι1 : G1 � G0 × G1 : g1 7→ (1, g1)
the canonical injections.

Fact 2.5 below is straightforward.

Fact 2.5 Let G0, G1 be special groups. Then the canonical map

ψ : Ssat(G0 ×G1) −→ Ssat(G0)× Ssat(G1)

∆ 7→ (ι−1
0 [∆], ι−1

1 [∆]) = (π0[∆], π1[∆])

is an order-preserving bijection, whose inverse is (∆0,∆1)
ψ−1

7→ ∆0 × ∆1.
In particular, if ∆ ∈ Ssat(G0 × G1) and (∆0,∆1) := (ι−1

0 [∆], ι−1
1 [∆]), then

∆ = ∆0 ×∆1 and ∆ is proper if and only if ∆0 or ∆1 is proper. Moreover:

• The canonical surjective morphism of special groups G0×G1 � G0/∆0×
G1/∆1 induces a natural isomorphism of special groups 1 q̄∆ : (G0 ×
G1)/∆

∼=−→ G0/∆0 ×G1/∆1;

• If ∆ ⊆ ∆′ ∈ Ssat(G0 × G1), then the projection (G0 × G1)/∆ �
(G0×G1)/∆′ is naturally identified, via the isomorphisms q̄∆, q̄∆′, with
the (product) projection G0/∆0 ×G1/∆1 � G0/∆

′
0 ×G1/∆

′
1.

2.2 On projective systems of (valued) fields

Let (I,≤) be a poset. For each i, j ∈ I such that i ≤ j we define d(i, j) :=
max{length of a chain from i to j} ∈ N ∪ {∞}, and if i � j then we set
d(i, j) := −∞. Of course, in case i and j are comparable, we have d(i, j) =
d(j, i) if and only if i = j if and only if d(i, j) = 0.

We will often consider (I,≤) as a directed graph whose vertices are the
elements of I, and where there is an edge from i to j if and only if i ≤ j and
d(i, j) = 1.

We first remark that it is possible to describe some projective systems of
fields as projective systems whose morphisms are all inclusions.

1That are reduced if ∆ is proper or, otherwise, the trivial special group {1}.
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Remark 2.6 Let F := (Fi, fij)i≤j∈I be a projective system of fields over a
downward directed poset (I,≤) with maximum element > ∈ I. Then there
is an isomorphic projective system of fields F ′ = (F ′i , ιij)i≤j∈I such that: if
i ≤ j ∈ I, then F ′i ⊆ F ′j and the morphism of fields ιij : F ′i −→ F ′j is the
inclusion. In particular, the projective limit of the system F is isomorphic
to the intersection of the fields F ′i , i ∈ I.

We briefly sketch the argument. For each i ∈ I, we define F ′i := fi>[Fi] ⊆ F>.
Since for i ≤ j ∈ I, fi> = fj> ◦ fij, we obtain F ′i ⊆ F ′j , so we can define ιij to
be this inclusion. It follows that F and F ′ are isomorphic via the morphisms

(fi>)i∈I . Therefore: lim
←−

(Fj, fij)i≤j∈I ∼= lim
←−

(F ′j , ιij)i≤j∈I
∼=
⋂
i∈I

F ′i ⊆ F ′> .

The next results lead to corollary 2.10, which shows that any finite pro-
jective system of fields of characteristic zero, whose index set has a maximum
element, is isomorphic to the projective system given by the residues of a fi-
nite projective system of valued fields. We first fix some notation:
If (K, v) is a valued field, we denote by Kv or by K (if there is no risk of
confusion about which valuation we consider) the residue field of v, by vK its
value group, by OK the valuation ring associated to v and by MK its maximal
ideal (if there is no ambiguity about the valuation v under consideration). If
a ∈ OK , we denote by av or a (once again if there is no risk of confusion)
the class of a in the residue field K. Finally, if v has rank one, Kv denotes
a completion of K with respect to v.

If F = (Fi, ξij)i≤j∈I is a projective system of fields, we denote by G(F) the
system (G(Fi), G(ξij))i≤j∈I obtained from F by applying the special group
functor G.

If F = ((Fi, vi), ξij)i≤j∈I is a projective system of valued fields, we denote
by resF or Fv the induced residue projective system (Fivi, (ξv)ij)i≤j∈I , where
the (ξv)ij are the induced morphisms of fields.

If a projective system of fields or of valued fields is denoted by (Fi)i∈I
or (Fi, vi)i∈I , i.e. without mention of the morphisms, it means that the
morphisms are all inclusions (from a field within all fields with larger index).

Lemma 2.7 Let (K, v) be a henselian valued field of residue characteristic
zero and let L be a subfield of K. Let N be a subfield of K such that L ⊆
N ⊆ K. Then there is a field M such that L ⊆ M ⊆ K and M = N .
Moreover, if [N : L] is algebraic, respectively finite, then M can be chosen
such that [M : L] is algebraic, respectively finite.

Proof: Write N = L(X)(αi, i ∈ β), where X is a transcendence basis of N
over L and (αi, i ∈ β) is a (possibly infinite) tuple of elements that are alge-
braic over L(X), indexed by an ordinal β. Let Y be a set of transcendental
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elements over L such that Y = X. By [8, Corollary 2.2.2], the restriction
of v to L(Y ) is the Gauss extension of v from L to L(Y ). In particular
L(Y ) = L(X).
We now proceed by induction on k ∈ β to find elements ai ∈ K, i < k, such
that L(Y )(ai, i < k) = L(X)(αi, i < k).
If k = 0 there is nothing to prove since L(Y ) = L(X).
Assume we have found all ai for i < k. Let Nk = L(Y )(ai, i < k) and
Mk = L(X)(αi, i < k). By hypothesis we have Nk = Mk Let P ∈ OK [T ] be a
unitary polynomial such that P is the minimal polynomial of αk over L(X).
Let ak be a root of P in K such that ak = αk (it exists since (K, v) is henselian
of residue characteristic zero). We have Nk(ak) ⊇Mk(αk) and the fundamen-
tal inequality (see [8, Theorem 3.3.4]) tells us [Nk(ak) : Nk] ≤ [Nk(ak) : Nk](≤
degP ). Since [Mk(αk) : Mk] = degP , it follows thatNk(ak) = Mk(αk), which
is the desired result. 2

Definition 2.8 Let (K, v) be a valued field and let (Ei)i<n and (Fi)i<n be
two sequences of fields of the same length n. We say that (Fi)i<n is a good
residue of (Ei)i<n in (K, v) if

1. Ei ⊆ K and Fi ⊆ K for i < n;

2. For every A ⊆ {0, . . . , n− 1}, 〈Ei, i ∈ A〉 = 〈Fi, i ∈ A〉 (where 〈Li, i ∈
A〉 denotes the compositum of the fields Li).

Lemma 2.9 Let (K, v) be a henselian valued field of residue characteristic
zero, and let (Ei)i<n and (Fi)i<n be two sequences of fields of length n such
that (Fi)i<n is a good residue of (Ei)i<n in (K, v). Let (F ′i )i<m be a sequence
of subfields of K, and let, for i ∈ {0, . . .m− 1}

Ai = {j ∈ {0, . . . , n− 1} | Fj ⊆ F ′i}.

Then there is a sequence (E ′i)i<m of subfields of K such that

1. for every i ∈ {0, . . . ,m− 1} and every j ∈ Ai, Ej ⊆ E ′i and trdegE ′i |
Ej = trdegF ′i | Fj;

2. (F ′i )i<m is a good residue of (E ′i)i<m.

Proof: We will use the following fact, which is a reformulation of [8, Remark
4.1.2 (3)]:
Fact 1: Let (N,w) be a valued field and let P,Q ∈ ON [T ] and R ∈ N [T ]
be such that P = QR. Assume that Q is primitive (i.e. w′(Q) = 0, where
w′ is the Gauss extension of w to N [T ], i.e., mini≤k w(ai) = 0 if one writes
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Q = a0 + · · ·+ akT
k). Then R ∈ ON [T ].

Proof of fact 1: Write P = aP1 and R = cR1 with a, c ∈ N and P1, R1 ∈ N [T ]
such that w′(P1) = w′(R1) = 0 (so P1, R1 ∈ ON [T ]). Then w(c) = w′(Q) +
w′(cR1) = w′(QcR1) = w′(QR) = w′(P ) ≥ 0 since P ∈ ON [T ]. This yields
R = cR1 with w′(R) = w(c) + w′(R1) = w(c) ≥ 0, i.e. R ∈ ON [T ]. End of
proof of fact 1.

We need to fix some notation:
For A ⊆ {0, . . . , n − 1} we denote by FA the field 〈Fi, i ∈ A〉 and similarly
by EA the field 〈Ei, i ∈ A〉.
For i < m let Xi = {xi1, . . . , xiki} be a transcendence basis of F ′i over FAi

=
EAi

, and let Yi = {yi1, . . . , yiki} ⊆ K be a set of transcendental elements over
EAi

such that Yi = Xi. Note that by [8, corollary 2.2.2], it implies that the
restriction of v to EAi

(Yi) is the Gauss extension of v from EAi
to EAi

(Yi).
In particular we have EAi

(Yi) = EAi
(Xi) = FAi

(Xi) (the last equality holds
because (Fi)i<n is a good residue of (Ei)i<n).

Write F ′i = FAi
(Xi)(αi), where αi = (αij)j∈βi is a (possibly infinite) tuple

of elements algebraic over FAi
(Xi). For i < m and j ∈ βi let Pij ∈ OEAi

(Yi)[T ]

be a unitary polynomial such that Pij is the minimal polynomial of αij over

EAi
(Yi) = FAi

(Xi), and let aij ∈ OK be a root of Pij with aij = αij (aij exists
since (K, v) is henselian of residue characteristic zero). We take for E ′i the
field EAi

(Yi)(ai), where ai = (aij)j∈βi . The first conclusion of the lemma is
obviously satisfied. Let A ⊆ {0, . . . ,m− 1}.
Claim: Let L be a subfield of K such that (L, v) is henselian, 〈Ej, j ∈ Ai, i ∈
A〉(Yi, i ∈ A) ⊆ L, and 〈F ′i , i ∈ A〉 ⊆ L. Then ai ∈ L for every i ∈ A, i.e.
L ⊇ 〈E ′i, i ∈ A〉.
Proof of claim: Let i ∈ A and j ∈ βi. Since αij ∈ L and (L, v) is henselian
(of residue characteristic zero), there is bij ∈ OL such that bij = αij and bij
is a root of Pij. Assume bij 6= aij. Then we can write Pij(T ) = (T − aij)(T −
bij)R(T ) in EAi

(Yi, aij, bij). But Pij, (T−aij), (T−bij) ∈ OEAi
(Yi,aij ,bij)[T ] and

(T − aij)(T − bij) is primitive, so by Fact 1 we have R(T ) ∈ OEAi
(Yi,aij ,bij)[T ].

Going to the residue field K we get Pij(T ) = (T −αij)2R(T ), so αij is root of
order at least 2 of Pij, which is impossible since Pij is the minimal polynomial
of αij and charK = 0. So aij = bij ∈ L. End of proof of the claim.

We have E ′A = 〈E ′i, i ∈ A〉 = 〈〈Ej, j ∈ Ai〉(Yi)(ai), i ∈ A〉 = 〈Ej, j ∈
Ai, i ∈ A〉(Yi, i ∈ A)(ai, i ∈ A), and

〈Ej, j ∈ Ai, i ∈ A〉(Yi, i ∈ A) = 〈Ej, j ∈ Ai, i ∈ A〉(Xi, i ∈ A)

= 〈Fj, j ∈ Ai, i ∈ A〉(Xi, i ∈ A).

Moreover 〈F ′i , i ∈ A〉 = 〈〈Fj, j ∈ Ai〉(Xi)(αi), i ∈ A〉 = 〈Fj, j ∈ Ai, i ∈
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A〉(Xi, i ∈ A)(αi, i ∈ A). So 〈F ′i , i ∈ A〉 is an algebraic extension of
〈Ej, j ∈ Ai, i ∈ A〉(Yi, i ∈ A). In particular (see lemma 2.7) there is an al-
gebraic extension E ′′ of 〈Ej, j ∈ Ai, i ∈ A〉(Yi, i ∈ A) (inside K) such that
E ′′ = 〈F ′i , i ∈ A〉. Let Ẽ be the henselian closure of E ′′ in (K, v). We

have Ẽ = 〈F ′i , i ∈ A〉, E ′′ ⊆ Ẽ. By the claim, since Ẽ is henselian and

Ẽ ⊇ 〈F ′i , i ∈ A〉, we have ai ∈ Ẽ for every i ∈ A. It implies E ′A ⊆ Ẽ, which

gives, taking residues E ′A ⊆ Ẽ = 〈F ′i , i ∈ A〉. But by construction of the E ′i
we obviously have E ′A ⊇ 〈F ′i , i ∈ A〉. It follows that E ′A = 〈F ′i , i ∈ A〉. 2

Corollary 2.10 Let F = (Fi)i∈I be a finite projective system of fields of
characteristic zero and let ⊥ be the minimum of I. Assume that (I,≤) has a
maximum > and let (E⊥, v⊥) be a valued field such that E⊥v⊥ ∼= F⊥. Then
there is a projective system of valued fields (Ei, vi)i∈I such that (Fi)i∈I ∼=
res(Ei, vi)i∈I and, for every i ∈ I, trdegEi | E⊥ = trdegFi | F⊥. Moreover

• we can assume that all (Ei, vi), i ∈ I, are henselian;

• if v⊥ has rank one, then we can choose the valuations vi, i ∈ I, such
that they all have rank one.

Proof: Claim: There is a projective system of fields F ′ = (F ′i )i∈I with
F ′ ∼= F and there is an extension (K, v) of (E⊥, v⊥) such that K = F ′>, and
such that v has rank one if v⊥ has rank one. In particular K ⊇ F ′i for every
i ∈ I.
Indeed, write F> = F⊥(X)(ā), where X is a set of elements transcendental
over F⊥ and ā is a sequence of elements algebraic over F⊥(X). Take Y
a set of indeterminates with the same cardinality as X and consider the
Gauss extension w of v⊥ to E⊥(Y ). Then E⊥(Y ) ∼= F⊥(X). Note that w
has rank one if v⊥ has rank one. Using now for instance [7, Satz 1], we
find an (algebraic) extension (K, v) of (E⊥(Y ), w) such that K and F> are
isomorphic via a map which we denote by h : K → F> (and with v of rank
one if w has rank one). Define F ′i := h−1[Fi]. End of the proof of the claim.

To keep notation simple, we assume F = F ′ as in the claim above. We
construct the valued fields (Ei, vi) (for i 6= ⊥) as subfields of K endowed
with the restriction of the valuation v. Since the valuation will always be v,
we only look for the subfields Ei. Let ⊥ be the minimum of I. We find the
fields Ei by induction on d(⊥, i) (note that d(⊥,>) = maxj∈I d(⊥, j)).
For l ∈ {0, . . . , d(⊥,>)}, let Dl = {i ∈ I | d(⊥, i) = l}.
If d(⊥, i) = 0, then, by hypothesis and by the claim above, we already
have the sub-valued field (E⊥, v⊥) ⊆ (K, v). Note that since D0 = {⊥} the
sequence of fields (Fi)i∈D0 is a good residue of (Ei)i∈D0 in (K, v).
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Assume we have found a system of fields (Ei)i∈I,d(⊥,i)≤l such that res(Ei, v �
Ei) = Fi for i ∈ I so that d(⊥, i) ≤ l and (Fi)i∈Dl

is a good residue of (Ei)i∈Dl

in (K, v). We write Dl+1 = {ik | k < m}, then we apply lemma 2.9 with
(F ′k)k<m = (Fik)k<m, and obtain in this way a sequence (E ′k)k<m. We define
the fields Ei for i ∈ Dl+1 by (Eik)k<m = (E ′k)k<m.

Finally, we can replace (E>, v>) by one of it henselian closures, and each
(Ei, vi) by its henselian closure inside (E>, v>). The new residue system is
isomorphic to the previously defined residue system, which shows that we
can assume that all (Ei, vi) are henselian. 2

3 Main results

Our main result, corollary 3.3, is a direct consequence of the following two
theorems, whose proofs are given in sections 4 and 5 respectively.

Theorem 3.1 Let K := (Ki, fij)i≤j∈I be a projective system of fields (re-
spectively formally real Pythagorean fields) such that G(Ki) is finite for ev-
ery i ∈ I. Let (Gi, λij)i≤j∈I = G(K) and let G be the projective limit of this
projective system of finite special groups. Then G is isomorphic to the special
group of some field (respectively formally real Pythagorean field).

Theorem 3.2 Let G := (Gi, λij)i≤j∈I be an adequate projective system of
finite reduced special groups (see definition 2.4). Then there is a projective
system K of formally real Pythagorean fields whose morphisms are inclusions,
such that G ∼= G(K).

Consider now a profinite reduced special group G. Say it is the projective
limit of the system G = (Gi, fij)i≤j∈I of finite reduced special groups. Let
i′ be any element in I and consider the system G ′ equal to G restricted to
indices in I ′ := {i ∈ I | i ≤ i′}. The special group G is the projective limit
of the system G ′, whose index set I ′ has a maximum element > = i′. We can
now use the strategy outlined after definition 2.2 to express G as an adequate
projective system whose index set is I ′. Applying theorem 3.2 then theorem
3.1 now yields

Corollary 3.3 Every profinite reduced special group is isomorphic to the
special group of some formally real Pythagorean field.

4 Proof of theorem 3.1

If (I,≤) is a downward directed poset and i ∈ I, then i← denotes {j ∈ I |
j ≤ i} and i→ denotes {j ∈ I | j ≥ i}.
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First of all, we assume the following reductions:

1. I has a maximum > (I = >←);

2. all Ki, i ∈ I, are subfields of the field M := K>, and the morphisms
fij : Ki → Kj are inclusions. In particular, the projective limit of the
system K is isomorphic to the intersection of the fields Ki, i ∈ I.

These assumptions can safely be made because for the original projective
system of fields K := (Kj, fjk)j≤k∈I and for each i′ ∈ I fixed:
(i) The set i′← is a coinitial subset of I;
(ii) If j ≤ i′ ∈ I, we can identify Kj with the subfield K ′j := fji′ [Kj] of Ki′ ,
and the morphisms fjk : Kj → Kk are naturally identified with inclusions
ιjk : K ′j ↪→ K ′k.
The reductions above give us:

lim
←−

(Kj, fjk)j≤k∈I ∼= lim
←−

(Kj, fjk)j≤k∈i′← ∼= lim
←−

(K ′j, ιjk)j≤k∈i′←

∼=
⋂
j∈i′←

fji′ [Kj] ⊆ Ki′ ;

G := lim
←−

(G(Kj), G(fjk))j≤k∈I ∼= lim
←−

(G(Kj), G(fjk))j≤k∈i′←

∼= lim
←−

(G(K ′j), G(ιjk))j≤k∈i′← .

Now consider the language L = LR∪{Ri}i∈I , where LR is the language of
rings and the Ri are unary relation symbols. We turn M into an L-structure
by interpreting each Ri in M by the subfield Ki.

Let N be an |I|+-saturated elementary extension of M in the language L
(see [4, Chapter 5 and Lemma 5.1.2], or [10, p. 480 and Corollary 10.2.2] for
the definition of saturated models and the existence result we just used. Note
that this notion of saturation is not linked to the existing one for subgroups
of special groups). Each Fi := RN

i is a field (a subfield of N), and the fields
Fi form a projective system of fields F (since for k ≤ i, j ∈ I the sentence
“Rk ⊆ Ri ∩ Rj” is in the theory of M). Moreover, for every i ∈ I, Ki ↪→
Fi is an LR-elementary embedding and therefore induces an isomorphism

of special groups G(Ki)
∼=−→ G(Fi) (since the special groups G(Ki), being

finite, are described in the theory of M). More generally G(K) ∼= G(F), so
G ∼= lim

←−
G(K) ∼= lim

←−
G(F).

Let F :=
⋂
i∈I Fi and define

ξ : G(F ) → lim
←−

G(F)

a · Ḟ 2 7→ (a · Ḟi
2
)i∈I .
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We show that ξ is an isomorphism of special groups, which yields G ∼= G(F )
as needed (in particular, if the fields Ki, i ∈ I, are formally real Pythagorean,
then F =

⋂
i∈I Fi is formally real Pythagorean, since G(F ) is a reduced

special group).

1) It is clear that ξ is well-defined and is a morphism of groups.

2) ξ is a morphism of special groups:
It is clear that ξ sends −1 to −1.
Let a · Ḟ 2, b · Ḟ 2 ∈ G(F ) be such that a · Ḟ 2 ∈ DG(F )〈1, b · Ḟ 2〉. There are

then c, d ∈ F such that, for all i ∈ I, a = c2 + bd2 in Fi. Then a · Ḟi
2 ∈

DG(Fi)〈1, b · Ḟi
2〉 for every i ∈ I, and therefore ξ(a · Ḟ 2) ∈ DG′〈1, ξ(b · Ḟ 2)〉.

3) ξ is surjective: Let a = (ai · Ḟ 2
i )i∈I ∈ lim

←−
G(Fi). So for all i ≤ j ∈ I,

ai · Ḟ 2
j = aj · Ḟ 2

j . We want x ∈ N satisfying the following set of formulas

∆ := {x ∈ Fi}i∈I ∪ {x = ai mod Ḟ 2
i }i∈I .

Every finite part of ∆ is satisfied in N since a = (ai · Ḟ 2
i )i∈I ∈ lim

←−
G(Fi) (it

suffices to take x = ak, where k is less than every one of the indices i ∈ I
occurring in this finite part). By |I|+-saturation, ∆ has a solution x in N .
Then ξ(x) = (ai · Ḟ 2

i ).

The rest of the proof relies on the following lemma.

Lemma 4.1 Let n ∈ N and let P (X1, . . . , Xn) ∈ F [X1, . . . , Xn]. Assume
that P (X1, . . . , Xn) = 0 has a solution in every Fi, i ∈ I. Then the equation
P (X1, . . . , Xn) = 0 has a solution in F .

Proof: We are looking for x̄ ∈ N such that the set of formulas∑
:= {P (x̄) = 0} ∪ {x̄ ∈ Fi}i∈I

is satisfied in N .
Since the Fi, together with the inclusions between them, form a projective
system, every finite part of

∑
has a solution, and by the |I|+-saturation of

N ,
∑

has a solution in N . 2

We go back to proving that ξ is an isomorphism:

4) ξ is injective: Let a = a · Ḟ 2 ∈ G(F ) be such that ξ(a) = 1, i.e. a ∈ Ḟi
2

for every i ∈ I, i.e. the polynomial X2 − a has a root in each Fi, i ∈ I. By
lemma 4.1, X2 − a has a root in F , hence a ∈ Ḟ 2.

5) ξ is a monomorphism of special groups: Let a, b ∈ F be such that, for
every i ∈ I, a · Ḟ 2

i ∈ D〈1, b · Ḟ 2
i 〉. Let P (X, Y ) = a− (X2 + bY 2) ∈ F [X, Y ].

By hypothesis, P (X, Y ) = 0 has a solution in each Fi, hence a solution in F
by lemma 4.1, which means a ∈ DG(F )〈1, b〉.

11



5 Proof of theorem 3.2

5.1 Reducing to a finite projective system

Since G is adequate, the set (I,≤) has a maximum element >.
The purpose of this short section is to observe that it is enough to prove

theorem 3.2 when G := (Gi, fij)i≤j∈I is a finite projective system of special
groups such that I has a maximum (which we will also denote by >).

Let L be the language {0, 1,−,+, ·} ∪ {Fi | i ∈ I} ∪ {Qg
i | i ∈ I, g ∈ Gi},

where 0, 1 are constant symbols, − is a unary function symbol, +, · are binary
function symbols and Fi, Q

g
i are unary predicate symbols, for each i ∈ I and

g ∈ Gi. Denote by λi the inverse of the bijection g ∈ Gi 7→ Qg
i , i ∈ I.

The projective system of fields we are looking for is a model of the theory
Ω consisting of (first-order) L-sentences that are informally described in the
four items below:

1. the interpretation of the unary predicate F> is the universe of the L-
structure (i.e., ∀x(F>(x))) and “(F>, 0, 1,+, ·) is a field”;

2. for every i ≤ j ∈ I:
“Fi ⊆ Fj” and “(Fi, 0, 1,+, ·) is a subfield of the field (F>, 0, 1,+, ·)”
(technically speaking, + and · are functional symbols globally defined
whose restrictions to Fi give internal operations on Fi);

3. for every i ∈ I:
“λi is an isomorphism of special groups G(Fi) −→ Gi”;

4. for every i ≤ j ∈ I:
“the morphism of special groups induced by the inclusion Fi ⊆ Fj is
naturally identified with fij, via the isomorphisms λi, λj”.

It is clear how to describe the expressions in items 1 and 2 by first-order
L-sentences. For the reader’s convenience, we add a more explicit description
of the L-sentences involved in the two remaining items: the hypothesis that
the special groups Gi are all finite ensures that the prescription in item 3 can
be encoded by a set of first-order L-sentences.

Item 3: for each i ∈ I:

• for each g ∈ Gi, “Qg
i ⊆ Ḟi” and “Qg

i = aḞ 2
i , for some a ∈ Ḟi;

• for each g, g′ ∈ Gi such that g 6= g′, “Qg
i ∩Q

g′

i = ∅”;

• “Ḟi =
⋃
{Qg

i | g ∈ Gi}” (as Gi is a finite special group, this can be
described by a first-order L-sentence);

12



• “1 ∈ Q1
i and −1 ∈ Q−1

i ”;

• for each g, g′ ∈ Gi, “for each a, a′, if a ∈ Qg
i and a′ ∈ Qg′

i then a · a′ ∈
Qgg′

i ”;

• for each g, g′ ∈ Gi such that g′ ∈ DGi
(1, g), “for each a, a′, if a ∈ Qg

i

and a′ ∈ Qg′

i then there are x, y ∈ Fi such that a′ = x2 + ay2”;

• for each g, g′ ∈ Gi such that g′ /∈ DGi
(1, g), “for each a, a′, if a ∈ Qg

i

and a′ ∈ Qg′

i then for all x, y ∈ Fi, a′ 6= x2 + ay2”.

Item 4: for each i ≤ j ∈ I:
By the axioms above: as Fi ⊆ Fj and we have the partitions Ḟi/Ḟ

2
i = {Qg

i |
g ∈ Gi} and Ḟj/Ḟ

2
j = {Qg′

j | g′ ∈ Gj}, then for each g ∈ Gi there is

a unique g′ ∈ Gj such that Qg
i ⊆ Qg′

j . In this way we obtain a function

qij : Ḟi/Ḟ
2
i −→ Ḟj/Ḟ

2
j . Clearly qij(a.Ḟ

2
i ) = a.Ḟ 2

j , for every a ∈ Ḟi, i.e. qij
is the special group morphism induced by the inclusion Fi ⊆ Fj. We add a
new list of axioms expressing that λj ◦ qij = fij ◦λi. A direct examination of
the equivalent condition qij = λ−1

j ◦ fij ◦ λi shows that these axioms must be

for each g ∈ Gi, “Qg
i ⊆ Q

fij(g)
j ”.

Using now the compactness theorem (see [4, Theorem 1.3.22] or [10, The-
orem 6.1.1]), to find a model of this theory we only need to find a model of
every finite part Ω0 ⊆ Ω. Let J be the set of elements of I occurring in this
finite part Ω0, together with >. Since I is downward directed, we can assume
that J is also downward directed (taking a larger set J if necessary), that is
J has a first element ⊥. In particular J determines a finite projective system
of special groups whose index set that has a maximum and a minimum.

5.2 Description of the proof by induction

We therefore assume from now on that the index poset (I,≤) is finite and that
it has a minimum ⊥ and a maximum >. We find a finite projective system
K of Pythagorean fields of characteristic 0 such that G ∼= G(K) by induction
on the construction of G⊥ by products and extensions. For the purpose of
the proof, we allow the (non-reduced) special group {1} to appear in G.

Recall that since G is an adequate projective system, the morphisms fij,
i ≤ j ∈ I, are quotients by saturated subgroups (see the paragraph after
definition 2.2).

If G⊥ ∼= {1}, then all special groups in the system are trivial and all
morphisms are isomorphisms. We can obviously realize such a system by

13



taking Fi = A, i ∈ I, where A is any fixed algebraically closed field of
characteristic 0.

If G⊥ ∼= Z2, then all special groups in the system are isomorphic to Z2

or to {1} and all morphisms are isomorphisms or naturally identified with
Z2 � {1}. We can obviously realize such a system by simply selecting a real
closed field R and an algebraically closed field A such that R ⊆ A.

If G⊥ ∼= G′⊥×G′′⊥. Since all morphisms and special groups in the systems
are quotients of G⊥ by (larger and larger) saturated subgroups, and using fact
2.5, the whole projective system (Gi, fij)i≤j∈I splits according to the product
G⊥ ∼= G′⊥×G′′⊥ into two adequate projective systems of finite special groups:
(G′i, f

′
ij)i≤j∈I and (G′′i , f

′′
ij)i≤j∈I

2. By induction these systems are realized by
two projective systems of Pythagorean fields of characteristic 0: F ′ = (F ′i )i∈I
and F ′′ = (F ′′i )i∈I (where the morphisms are inclusions), so we just need to
“glue” them together. For this we use results from [11], which describe how
to realize a finite product of finite special groups when each one is already
realized. This is achieved in section 5.3.

If G⊥ ∼= G′[H]. As above, the morphisms of special groups in the projec-
tive system are quotients of G⊥ by (larger and larger) saturated subgroups
∆i. This case is dealt with in section 5.4, using results from [2].

5.3 Gluing, the product case

This section consists entirely in the proof of the following result.

Theorem 5.1 Let (I,≤) be a finite downward directed index set with first
element ⊥ and last element >. Let F ′ = (F ′i )i∈I , F ′′ = (F ′′i )i∈I be finite
projective systems of fields of characteristic 0, where the morphisms are in-
clusions and such that for every i ∈ I G(F ′i ) and G(F ′′i ) are finite special
groups. Then there is a finite projective system F = (Fi)i∈I of fields of
characteristic 0 (where the morphisms are inclusions) such that

G(F) ∼= G(F ′)×G(F ′′).

Remark 5.2 In the above theorem, for each i ∈ I we have:
a) Fi is Pythagorean if and only if F ′i and F ′′i are Pythagorean.
b) If Fi is Pythagorean, then Fi is formally real if and only if F ′i or F ′′i is
formally real.

We begin with a reformulation of some results from [11].

2Note that, for each i ∈ I, if Gi is reduced, then either both G′i and G′′i are reduced or
one of them is the trivial special group {1} and the other is reduced.
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Definition 5.3 Let F be a field equipped with n mutually independent val-
uations of rank one v1, . . . , vn, and let fi be an embedding of F into F vi,
a completion of F with respect to vi. We say that (F, f1, . . . , fn) fulfils the
global squares property if for every a ∈ F :

a ∈ Ḟ 2 ⇔ ∀i ∈ {1, . . . , n} fi(a) ∈ ( ˙F vi)
2
.

(Note that the left to right implication always holds.)

Theorem 5.4 ([11], Corollary 2.5) With notation as in definition 5.3,
assume that (F, f1, . . . , fn) fulfils the global squares property. Then the map

ξF : G(F ) →
∏n

i=1G(F vi)

aḞ 2 7→ (fi(a) · ( ˙F vi)
2
)i=1,...,n

is an isomorphism of special groups.

Theorem 5.5 ([11], Theorem 2.6) Let (Li, vi1, . . . , vin)i∈I be a finite pro-
jective system of fields equipped with n mutually independent valuations of
rank one, and such that I has a maximum element >. Then for every i ∈ I
there is an algebraic extension E(Li) of Li and a morphism of special groups
ηi : G(E(Li)) −→

∏n
k=1 G((Li)

vik) such that

1. E(Li) ⊆ E(Lj) for every j ∈ I, j ≥ i;

2. G(E(Li)) ∼=
ηi

∏n
k=1 G((Li)

vik);

3. The morphism of special groups
∏n

k=1G((Li)
vik) →

∏n
k=1 G((Lj)

vjk),
given by the product of the morphisms of special groups induced by
(Li)

vik ⊆ (Lj)
vjk is naturally identified, via the isomorphisms ηi and

ηj, with the morphism of special groups G(E(Li))→ G(E(Lj)) induced
by E(Li) ⊆ E(Lj).

Proof: Since a valuation vik is the restriction on Li of the valuation v>k,
we drop the first index and simply denote it by vk. For k ∈ {1, . . . , n} we
fix a completion Lk> of L> with respect to vk and define, for i ∈ I, Lki to
be the completion of Li in Lk> with respect to vk. The systems (Lki )i∈I , for
k ∈ {1, . . . , n}, are all projective systems of fields, where the morphisms
are the inclusions (since Lki is simply the set of limits in Lk> of vk-Cauchy
sequences of elements of Li).
Let K+ be an algebraic closure of L>. We define the set

L := {(Ei, ιi1, . . . , ιin)i∈I | (Ei, ιi1, . . . , ιin)i∈I projective system of fields,

Li ⊆ Ei ⊆ K+, with Ei | Li algebraic, and equipped with

the Li-embeddings of fields ιik : Ei → Lki for k = 1, . . . , n},
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(note that the condition that (Ei, ιi1, . . . , ιin)i∈I is a projective system implies
ιik ⊆ ιjk for i ≤ j ∈ I and k ∈ {1, . . . , n}, which is possible since Lki ⊆ Lkj ).
We equip L with the partial ordering:

(Ei, ιi1, . . . , ιin)i∈I ≤ (Fi, κi1, . . . , κin)i∈I

if and only if

for every i ∈ I and k ∈ {1, . . . , n}, Ei ⊆ Fi and ιik ⊆ κik.

By Zorn’s lemma, L has a maximal element (Mi, fi1, . . . , fin)i∈I . We show
that, for j ∈ I, (Mj, fj1, . . . , fjn) fulfils the global squares property. Let j ∈ I
and let a ∈Mj \ {0} be such that fjk(a) ∈ (Lkj )

×2, for k = 1, . . . , n. Assume√
a 6∈ Mj. Fix a square root

√
a of a and αk ∈ Lkj such that α2

k = fjk(a).
Then each morphism fjk can be (properly) extended to M ′

j := Mj(
√
a) by

sending
√
a to αk. Moreover, with Aj := {r ∈ I | r ≥ j}, and since for

r ∈ Aj we have Lkj ⊆ Lkr , the same reasoning tells us that, for each r ∈ Aj
and k ∈ {1, . . . , n}, each morphism frk can be extended to M ′

r := Mr(
√
a)

by sending
√
a to αk (since αk ∈ Lkr). If r ∈ I \ Aj, we take M ′

r := Mr. We
obtain in this way (M ′

i , f
′
i , . . . , f

′
n)i∈I , a projective system of fields equipped

with n morphisms of fields that is (strictly) larger than (Mi, fi, . . . , fn)i∈I ,
a contradiction. It follows that

√
a ∈ Mj and thus that (Mj, fj1, . . . , fjn),

for j ∈ I, fulfils the global squares property. If we take E(Li) = Mi for
i ∈ I, the first conclusion of the theorem then holds, and the second follows

by theorem 5.4 ([11, Corollary 2.5]), with ηi : G(Mi)
∼=−→
∏n

k=1G((Li)
k) :

a · Ṁ2
i 7→ (fi(a) · (Lki )

×2
)i=1,...,n, for i ∈ I. The third conclusion is proved in

the next lemma. 2

Lemma 5.6 With notation as in theorem 5.5 and its proof:
Let (L, v1, . . . , vn) ⊇ (K, v1 � K, . . . , vn � K) be two fields equipped with n
mutually independent valuations of rank one. For m = 1, . . . , n let

• Lm be a completion of L with respect to vm and Km be a completion of
K with respect to vm � K such that Km ⊆ Lm,

• fm be an embedding of K into Km and gm be an embedding of L into
Lm extending fm.

Assume that (K, f1, . . . , fn) and (L, g1, . . . , gn) satisfy the global squares prop-
erty.
Let λ :

∏n
m=1 G(Km) →

∏n
m=1G(Lm) be the product of the morphisms of

special groups induced by the inclusions Km ⊆ Lm for m = 1, . . . , n, and let
µ : G(K)→ G(L) be the morphism of special groups induced by K ⊆ L.
Then λ and µ are naturally identified via the isomorphisms ξK and ξL of
Theorem 5.4.
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Proof: By theorem 5.4 the isomorphism between G(K) and G(K1)× · · · ×
G(Kn) is

ξK : G(K) → G(K1)× · · · ×G(Kn)

x · K̇2 7→ (f1(x) · ˙(K1)
2
, . . . , fn(x) · ˙(Kn)

2
).

Similarly, the isomorphism between G(L) and G(L1)× · · · ×G(Ln) is

ξL : G(L) → G(L1)× · · · ×G(Ln)

x · L̇2 7→ (g1(x) · ˙(L1)
2
, . . . , gn(x) · ˙(Ln)

2
).

Then λ = ξL ◦ µ ◦ ξ−1
K since, for m = 1, . . . , n, gm � K = fm. 2

We now turn our attention to the two finite projective systems of fields
F ′ = (F ′i )i∈I and F ′′ = (F ′′i )i∈I of characteristic zero introduced in the state-
ment of theorem 5.1. We first show that we can assume that the fields in
F ′ and F ′′ are at most countable and of finite transcendence degree over Q.
This is achieved by the following proposition.

Proposition 5.7 ([11], Proposition 3.1) Let L := (Li)i∈I be a finite pro-
jective system of fields of characteristic 0 such that for all i ∈ I, G(Li) is
a finite special group. There is a map F , defined on {Li}i∈I , such that, for
every i ≤ j ∈ I:

1. F(Li) is a countable subfield of Li with finite transcendence degree over
Q;

2. If ϕi : F(Li) ↪→ Li is the inclusion map, then G(ϕi) : G(F(Li)) →
G(Li) is an isomorphism of special groups;

3. F(Li) ⊆ F(Lj);

4. If λij : G(Li) → G(Lj) is the morphism of special groups induced by
Li ⊆ Lj, then the morphism of special groups G(F(Li)) → G(F(Lj))
induced by F(Li) ⊆ F(Lj) is naturally identified with λij, via the iso-
morphisms G(ϕi) and G(ϕj).

Proof: The proof is a trivial extension of Kula’s. If L is a field with a finite
number of square classes, a representative system of G(L) is a finite subset
R(L) = A ∪B of L such that

• A ⊆ L̇ and L̇/L̇2 = A/L̇2;

• For every a1, a2 ∈ A with a1 ∈ DL〈1, a2〉, there are b1, b2 ∈ B such that
a1 = b2

1 + a2b
2
2.
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Claim: For every i ∈ I there is a representative system R(Li) of Li such that
R(Li) ⊆ R(Lj) whenever i ≤ j.
Proof of the claim: Direct by induction on d(⊥, i) (just take a system of
representatives of Li and add to it all the R(Lj) for ⊥ ≤ j < i).
Then, just as in [11], take for F(Li) the algebraic closure of Q(R(Li)) in
Li. 2

The following two propositions show that we can assume that atd(F ′i ) =
atd(F ′′i ) for every i ∈ I, where atd denotes the absolute transcendence degree,
i.e. the transcendence degree over Q.

Proposition 5.8 ([11], Lemma 3.2) Let (Li)i∈I be a finite projective sys-
tem of countable fields of finite absolute transcendence degree. There is a
map T defined on {Li}i∈I such that, for every i ≤ j ∈ I:

1. T (Li) is a countable field extension of Li;

2. atd(T (Li)) = atd(Li) + 1;

3. If τi : Li ↪→ T (Li) is the inclusion map, then G(τi) : G(Li)→ G(T (Li))
is an isomorphism of special groups;

4. T (Li) ⊆ T (Lj);

5. If λij : G(Li) → G(Lj) is the morphism of special groups induced by
Li ⊆ Lj, then the morphism of special groups G(T (Li)) → G(T (Lj))
induced by T (Li) ⊆ T (Lj) is naturally identified with λij (via G(τi)
and G(τj)).

Proof: For i ∈ I let Ki := Li(x)( 2n
√
x)n∈N (x is an indeterminate), and

consider on Ki the unique extension vi of the valuation on Li(x) determined
by the irreducible polynomial x. The Ki, together with their inclusions, form
a projective system, and the sets Φi := {vi} satisfy the hypothesis of theorem
5.5. We now apply the map E defined in theorem 5.5 to the projective system
of the Ki and get the projective system of the T (Li). Since Li is countable,
Ki and T (Li) = E(Ki) are countable. Kula’s proof of [11, lemma 3.2] shows
that the second and third claims of the proposition hold, and the last two
hold by theorem 5.5. 2

Proposition 5.9 There exist two finite projective systems of fields of char-
acteristic 0, K′ = (K ′i)i∈I and K′′ = (K ′′i )i∈I , such that

1. G(K′) ∼= G(F ′) and G(K′′) ∼= G(F ′′);

2. For every i ∈ I, atd(K ′i) = atd(K ′′i ) <∞.
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Proof: We assume there is some i ∈ I such that atd(F ′i ) 6= atd(F ′′i ) and we
proceed by induction on d(⊥, i), the maximal length of a chain from ⊥ to i.

• d(⊥, i) = 0, i.e. i = ⊥. Let t := max{atd(F ′⊥), atd(F ′′⊥)}. We then
apply proposition 5.8 as many times as necessary to the system F ′ or
F ′′ (the one that does no realize the maximum), and we obtain two
new systems F ′(0) and F ′′(0) indexed by I, whose fields of index ⊥ have

same (finite) absolute transcendence degree t.

• d(⊥, i) = n > 0. We now proceed by induction on the number of i’s
with d(⊥, i) = n and atd(F ′i ) 6= atd(F ′′i ). We fix one of them: i1.
By induction we can assume that the projective systems F ′ and F ′′
satisfy atd(F ′j) = atd(F ′′j ) for every j ∈ I, d(⊥, j) < n. We consider
the systems F ′ � i→1 and F ′′ � i→1 . By applying proposition 5.8, we
get two new systems T ′ and T ′′, indexed by i→1 whose fields indexed
by i1 have same absolute transcendence degree. We replace, in F ′,
respectively F ′′, the subsystem F ′ � i→1 by T ′, respectively F ′′ � i→1 by
T ′′ and we write F ′(1), F ′′(1) for the new sets of fields. Since every field
has been replaced by a field extension, we still get projective systems
of fields and, moreover, G(F ′(1))

∼= G(F ′) and G(F ′′(1))
∼= G(F ′′). Now

atd(F ′(1)i1
) = atd(F ′′(1)i1

) <∞, and we proceed by induction. 2

So from now on, we assume that our two finite projective systems of fields
F ′ and F ′′ consist of countable fields having the same finite transcendence
degree over Q at each index.

Remark 5.10 Let K be a field equipped with two independent valuations
v1 and v2 and let (L,w1, w2) be an extension of (K, v1, v2). Then w1 and
w2 are independent. Indeed, if it were not the case, then w1 and w2 would
define the same topology on L (see [8, Theorem 2.3.4]), and therefore the
same induced topologies on K, which coincide with the topologies defined
by v1 and v2. It shows that v1 and v2 define the same topology on K, a
contradiction since they are independent (again by [8, theorem 2.3.4]).

Lemma 5.11 There are two henselian valued fields (E ′⊥, v
′) and (E ′′⊥, v

′′)
both containing Q(X), such that

1. v′ and v′′ are of rank one;

2. E ′⊥v
′ ∼= F ′⊥ and E ′′⊥v

′′ ∼= F ′′⊥;

3. atdE ′⊥ = atdF ′⊥ + 1 = atdF ′′⊥ + 1 = atdE ′′⊥;
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4. v′E ′⊥ and v′′E ′′⊥ are divisible (two-divisible is actually enough for our
purposes);

5. The restrictions of v′ and v′′ to Q(X) are independent.

Proof: Let {y1, . . . , yk} be a finite transcendence basis of F ′⊥ over Q, and let
E be Q(y1, . . . , yk)(X), equipped with the valuation v determined by the irre-
ducible polynomial X ∈ Q(y1, . . . , yk)[X]. Then E ∼= Q(y1, . . . , yk), vE = Z
and F ′⊥ is isomorphic to an algebraic extension of E. By [7, Satz 1], there
is an algebraic extension E ′⊥ of E and an extension v′ of v to E ′⊥ such that
E ′⊥ = F ′⊥ and v′E ′⊥ is divisible of rank one.
To construct (E ′′⊥, v

′′), we proceed as above but start with the valuation on
Q(y1, . . . , yk)(X) associated to the irreducible polynomial X − 1. Obviously,
v′′ � Q(X) and v′ � Q(X) are independent over Q(X). 2

We now apply corollary 2.10 twice (with the valued fields (E ′⊥, v
′) and (E ′′⊥, v

′′)
given by lemma 5.11), and get two projective systems of henselian valued
fields E ′ = (E ′i, v

′
i)i∈I and E ′′ = (E ′′i , v

′′
i )i∈I equipped with valuations of rank

one, such that res(E ′) ∼= F ′ and res(E ′′) ∼= F ′′. Up to renaming the transcen-
dental elements, we can assume that for every i ∈ I there is a finite set Xi

of transcendental elements over Q and an algebraic closure Qi of Q(Xi) such
that E ′i, E

′′
i ⊆ Qi, and such that, for every i ≤ j ∈ I Xi ⊆ Xj and Qi ⊆ Qj.

Since, for i ∈ I, E ′i and E ′′i are both subfields of Qi, we can consider the
projective system of valued fields (E ′i ∩E ′′i , v′i, v′′i )i∈I . Note that v′i and v′′i are
independent by remark 5.10 and lemma 5.11 (5). We recall now the following
special case of a result due to Heinemann [9]:

Theorem 5.12 Let K be a field equipped with two independent valuations
v1 and v2. Fix an algebraic closure K̃ of K. Let (Hi, vi) be a henselian
extension of (K, vi) for i = 1, 2, such that H1, H2 ⊆ K̃ and K = H1 ∩H2.
Then (Hi, vi) is a henselization of (K, vi), for i = 1, 2.

Applying this result, we obtain that, for every i ∈ I, (E ′i, v
′
i) is a henselization

of (E ′i ∩E ′′i , v′i) and (E ′′i , v
′′
i ) is a henselization of (E ′i ∩E ′′i , v′′i ). In particular:

1. v′(E ′i ∩ E ′′i ) and v′(E ′i ∩ E ′′i ) are two-divisible;

2. res(E ′i ∩ E ′′i , v′i)i∈I ∼= F ′ and res(E ′i ∩ E ′′i , v′′i )i∈I ∼= F ′′;

3. v′ and v′′ are independent on E ′i ∩ E ′′i (by lemma 5.11.(5) and remark
5.10).

We now apply theorem 5.5 to the system (E ′i ∩ E ′′i , v′i, v′′i )i∈I and get the
system (E(E ′i∩E ′′i ))i∈I , which satisfies G((E(E ′i∩E ′′i ))i∈I) ∼= (G((E ′i∩E ′′i )v

′
i)×
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G((E ′i ∩E ′′i )v
′′
i ), g′ij × g′′ij)i≤j∈I , where g′ij, respectively g′′ij, is the map induced

by (E ′i ∩E ′′i )v
′
i ⊆ (E ′j ∩E ′′j )v

′
j , respectively by (E ′i ∩E ′′i )v

′′
i ⊆ (E ′j ∩E ′′j )v

′′
j . We

claim that this last projective system of (Pythagorean) fields is isomorphic
to (G(F ′i )×G(F ′′i ), f ′ij × f ′′ij)i≤j∈I . It suffices to check that, for instance, the

projective system (G((E ′i∩E ′′i )v
′
i), g′ij)i≤j∈I is isomorphic to (G(F ′i ), f

′
ij)i≤j∈I .

This is the content of the remainder of this section.
Since ((E ′i ∩ E ′′i )v

′
i , v′i) is an immediate extension of (E ′i ∩ E ′′i , v′i), we

have res((E ′i ∩ E ′′i )v
′
i , v′i)i∈I

∼= F ′, so G(res((E ′i ∩ E ′′i )v
′
i , v′i)i∈I)

∼= G(F ′) =
(G(F ′i ), f

′
ij)i≤j∈I and it suffices to show that (G((E ′i ∩ E ′′i )v

′
i , g′ij)i≤j∈I is iso-

morphic to G(res((E ′i ∩ E ′′i )v
′
i , v′i)i∈I)).

We are now in position to conclude by using the following adaptation of
the Baer-Krull theorem ([5, Theorem 1.33]). Recall that the functor G is
well defined, in general, from the category of unitary commutative rings into
the category of LSG-structures.

Lemma 5.13 Let (K, v) be a valued field, i : OK → K be the inclusion and
q : OK → K be the projection on the quotient (K = OK/MK). Suppose that
v(2) = 0.

1. The LSG-structures G(K) and G(K) are special groups. The induced
LSG-morphism G(i) : G(OK) → G(K) is injective and the induced
LSG-morphism G(q) : G(OK)→ G(K) is surjective.

2. If (K, v) is 2-henselian and vK = 2vK, then G(i) : G(OK) → G(K)
and G(q) : G(OK) → G(K) are LSG-isomorphisms. In particular, the
LSG-structure G(OK) is a special group.

3. If (K ′, v′) ⊇ (K, v) is a valued field extension, then OK ⊆ OK′, MK ⊆
MK′ and the diagram of special groups below is commutative (where the
vertical arrows are induced by the field extension).

G(K)

��

G(OK)
G(i) //G(q)oo

��

G(K)

��
G(K ′) G(OK′)

G(i′) //G(q′)oo G(K ′)

Proof:

1. Since v(2) = 0, 2 is invertible in the rings K,OK and K, and there-
fore, as K and K are fields, the LSG-structures G(K) and G(K) are
special groups ([5, Theorem 1.32 p.23]). As q : OK → K is a surjec-
tive ring homomorphism, it induces a surjective group homomorphism
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ȮK/Ȯ
2
K → K̇/K̇

2

and therefore G(q) : G(OK)→ G(K) is a surjective
LSG-morphism. Now let a ∈ ȮK such that a.K̇2 = 1.K̇2, i.e. there is
b ∈ K̇ such that a = b2, then 2v(b) = v(a) = 0 and b ∈ ȮK ; there-
fore ker(G(i)) = {1.Ȯ2

K} and G(i) : G(OK) → G(K) is an injective
LSG-morphism.

2. We first prove that G(q) is an LSG-isomorphism.

Let a ∈ ȮK such that q(a).K̇
2

= 1.K̇
2

then, as q : OK → K is a
surjective ring homomorphism, there is b ∈ ȮK such that q(a) = q(b2).
Consider now the polynomial P (t) = t2 − a in OK [t]: it is a quadratic
monic polynomial such that q(b) ∈ K is a root of P q(t) = t2 − q(a)
in K and this root is simple (since q(a) 6= 0 and char(K) 6= 2). The
hypothesis (K, v) 2-henselian then entails that there is b′ ∈ OK such
that q(b′) = q(b) and P (b′) = 0, i.e. a = b′2, for some b′ ∈ ȮK (because
a ∈ ȮK). Therefore ker(G(q)) = {1.Ȯ2

K} and G(q) is an injective
LSG-morphism.

We show that whenever a ∈ ȮK , we have DG(K)〈1, G(q)(aȮ2
K)〉 ⊆

G(q)[DG(OK)〈1, aȮ2
K〉]. Since q and G(q) are surjective, it is enough

to prove that for any z ∈ ȮK such that there are x, y ∈ OK with
q(z) = 1.q(x)2 + q(a).q(y)2, there are z′ ∈ ȮK and x′, y′ ∈ OK with

z′ = 1.x′2+a.y′2 and q(z′).K̇
2

= q(z).K̇
2

. We recall that ȮK = OK\MK

and we split the proof in four cases:
• x ∈MK , y ∈MK : it is not possible because q(z) 6= 0.
• x ∈ ȮK , y ∈ MK : then q(z) = q(x2) and the quadratic monic poly-
nomial P (t) = t2 − z over OK has a root in K, and this root is simple
(because q(z) 6= 0 and char(K) 6= 2). By the hypothesis (K, v) 2-
hensenlian, P has then a root x′ in OK . Taking this x′ as well as
z′ := z and y′ := 0 proves the result.
• x ∈ MK , y ∈ ȮK : then q(z) = q(ay2) and the polynomial P (t) =
t2 − a−1z has a root in K and this root is again simple (because
q(z), q(a) 6= 0 and char(K) 6= 2). Therefore P has a root y′ ∈ OK .
Taking this y′ together with z′ := z and x′ = 0 proves the result.
• x ∈ ȮK , y ∈ ȮK : then q((x/y)2 + a− zy−2) = 0 and the polynomial
P (t) = t2 +(a−z′), with z′ := zy−2, is a quadratic monic polynomial in
OK [t] such that q(x/y) ∈ K is a root of P q(t) = t2 + q(a− z′) in K and
we may suppose this root is simple (because, if not, as char(K) 6= 2,
then q(a − zy−2) = 0 and we can procceed as in the case just above).
Then the hypothesis (K, v) 2-henselian entails that there is x′ ∈ OK

such that 0 = P (x′) = x′2 + a − z′ and q(x′) = q(x/y), i.e. such that
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z′ = 1.x′2 + a.y′2, with y′ := 1. Therefore G(q)(z.Ȯ2
K) = G(q)(z′.Ȯ2

K) ∈
G(q)[DG(OK)〈1, aȮ2

K〉].
We now prove that G(i) is an LSG-isomorphism.

As vK = 2vK, for any a ∈ K̇ there is c ∈ K̇ such that v(ac2) = 0 i.e.
ac2 ∈ ȮK . Therefore G(i)(ac2.Ȯ2

K) = a.K̇2 and G(i) is surjective.

To finish the proof, we must check that for each a ∈ ȮK , we have
DG(K)〈1, G(i)(aȮ2

K)〉 ⊆ G(i)[DG(OK)〈1, aȮ2
K〉]. Remark that if a =

−b2 for some b ∈ ȮK then, as 2 ∈ ȮK , we have DG(OK)〈1, aȮ2
K〉 =

ȮK/Ȯ
2
K . Using now that G(i) is a surjective group homomorphism,

G(i)[DG(OK)〈1, aȮ2
K〉] = K̇/K̇

2

and therefore DG(K)〈1, G(i)(aȮ2
K)〉 ⊆

G(i)[DG(OK)〈1, aȮ2
K〉]. Thus we only have to deal with the case a /∈

−Ȯ2
K and, again as G(i) is a surjective group homomorphism, it is

enough to prove that for any z ∈ ȮK such that there are x, y ∈ K
with z = 1.x2 + a.y2, there are z′ ∈ ȮK and x′, y′ ∈ OK such that
z′ = 1.x′2 + a.y′2 and z′.K̇2 = z.K̇2.
We split the proof in four cases:
• x, y ∈ OK . Then we simply take z′ := z, x′ := x and y′ := y.
• x ∈ OK and y 6∈ OK . Then y−1 ∈ MK and x/y ∈ MK . Thus
(x/y)2 ∈ MK and 1(x/y)2 + a = zy−2 ∈ MK . This implies a ∈ MK , a
contradiction because a ∈ ȮK = OK \MK .
• x 6∈ OK and y = 0. Then z = x2 6∈ OK , a contradiction.
• x 6∈ OK and y 6= 0. Then z = x2(1 + a(y/x)2) ∈ ȮK and x−1 ∈
MK . As z ∈ ȮK , this implies (1 + a(y/x)2) = zx−2 ∈ MK , and
thus −a(y/x)2 ∈ 1 + MK . As (K, v) is 2-henselian and char(K) 6= 2,
1 + MK ⊆ O2

K and as y 6= 0, then −a ∈ K2. But −a ∈ ȮK , so
−a ∈ ȮK ∩K2 = Ȯ2

K , contradicting the hypothesis a ∈ ȮK \ −Ȯ2
K .

3. It follows directly from the definition of extension of valued fields that
the diagram of (local) rings and (local) homomorphisms below is com-
mutative

K

��

OK
q //

i
oo

��

K

��
K ′ OK′

q′ //
i′

oo K ′

and the result follows by applying the functor G to it. 2
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Under the hypotheses of lemma 5.13, the last item gives us in particular
the following commutative diagram

G(K)
τK //

��

G(K)

��
G(K ′)

τK′ // G(K ′)

(1)

where the maps τK := G(q) ◦ G(i)−1 and τK′ := G(q′) ◦ G(i′)−1 are iso-
morphisms of special groups whenever (K, v) and (K ′, v′) are 2-henselian
with 2-divisible value groups, and the vertical maps are induced by the field
inclusions.

Since, for i ≤ j ∈ I, we have an extension of valued fields ((E ′i ∩
E ′′i )v

′
i , v′i) ⊆ ((E ′j ∩ E ′′j )v

′
j , v′j) and these two fields are 2-henselian with di-

visible value groups, we conclude that the following diagram is commutative

G((E ′i ∩ E ′′i )v
′
i)

τi //

��

G((E ′i ∩ E ′′i )v
′
i)

��

G((E ′j ∩ E ′′j )v
′
j)

τj // G((E ′j ∩ E ′′j )v
′
j)

where the maps τi and τj are the isomorphisms corresponding to τK and τK′
in (1). This concludes the proof of theorem 5.1.

5.4 Gluing, the extension case

Since we are now in the last case of section 5.2, we have, for every i ∈ I,
Gi
∼= G′[H]/∆i, where H is a fixed finite group of exponent 2, ∆i is a

saturated subgroup of G′[H] and ∆⊥ = {1}. Furthermore, if i ≤ j ∈ I we
have ∆i ⊆ ∆j and fij is naturally identified with the canonical projection
from G′[H]/∆i onto G′[H]/∆j.

In view of this, the following theorem is a reformulation of the last induc-
tion step presented in section 5.2, and this section is devoted to its proof.

Theorem 5.14 Let (I,≤) be a finite downward directed index set with first
element ⊥ and last element >. Let G′ be a reduced special group and as-
sume that whenever G = (Gi, ηij)i≤j∈I is a projective system of reduced special
groups with G⊥ = G′, then G is realized by a projective system of Pythagorean
fields of characteristic zero (where the morphisms are inclusions).
Let H be a finite group of exponent 2 and let (∆i)i∈I be a projective system
of saturated subgroups of G′[H], where the morphisms are inclusions. Let G ′

24



be the projective system indexed by I of the special groups G′[H]/∆i, where
the morphisms are the canonical projections.
Then G ′ is realized by a projective system of Pythagorean fields of character-
istic zero (where the morphisms are inclusions).

Notation: If G is a special group and H is a group of exponent 2, we will
identify G (respectively H) with the subgroup G×{1} (respectively {1}×H)
in G[H] = {(g, h) | g ∈ G, h ∈ H} and write g · h for the pair (g, h).

As H ∼= H1×H2 entails G′[H] ∼= (G′[H1])[H2], we may assume dimF2 H =
1, i.e. H = {1, h} with h2 = 1 and h 6= 1.

We define, for i ∈ I and i ≤ j ∈ I:

Ωi := ∆i ∩G′, G′′i := G′/Ωi (note that Ωi ⊆ Ωj)

qij : G′′i → G′′j the canonical projection, and

Θi := {(g · Ωi).w ∈ G′′i [H] | g.w ∈ ∆i}.
The following fact is then easily checked

Fact 5.15 1. Ωi is a saturated subgroup of G′;

2. Θi is a saturated subgroup of G′′i [H] with G′′i ∩Θi = {1};

3. The morphism of special groups qij × Id : G′′i [H]→ G′′j [H] is such that
(qij × Id)(Θi) ⊆ Θj and (qij × Id)� Θi : Θi → Θj is injective;

4. The map
ωi : G′[H]/∆i → (G′/Ωi)[H]/Θi

(g · h)/∆i 7→ ((g/Ωi) · h)/Θi

is an isomorphism of special groups;

5. The following diagram commutes

G′[H]/∆i

fij //

ωi

��

G′[H]/∆j

ωj

��
G′′i [H]/Θi

q̃ij×Id// G′′j [H]/Θj

where ˜qij × Id is the canonical map induced on the quotients.

Note that by hypothesis, since G′′⊥ = G′, the projective system (G′′i , qij)i≤j∈I
is realized by a system of Pythagorean fields (Ki)i∈I of characteristic zero.

To complete the proof, it is then enough to represent the projective sys-

tem of special groups (G′′i [H]/Θi, ˜qij × Id)i≤j∈I by some projective system of
Pythagorean fields of characteristic zero, i.e. to prove the following proposi-
tion.
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Proposition 5.16 There is a projective system of Pythagorean fields of char-
acteristic zero (Li)i∈I , where the morphisms are inclusions, such that

(G′′i [H]/Θi, ˜qij × Id)i≤j∈I ∼= G((Li)i∈I).

The rest of this section now consists in the proof of proposition 5.16.
Let us denote by γij the morphism of special groups induced by Ki ⊆ Kj:

(G(Ki), γij)i≤j∈I ∼= (G′′i , qij)i≤j∈I .

We define Mi = Ki((t)) for every i ∈ I and record the following well
known result:

Lemma 5.17 Ṁi/Ṁi
2

= {atk · Ṁi
2 | a ∈ K̇i, k ∈ {0, 1}}, and the isomor-

phism of special groups from G(Mi) to G(Ki)[H] is

λi : G(Mi) → G(Ki)[H]

atk · Ṁi
2 7→ (a · K̇i

2
)hk.

Proof: This is exactly [5, Theorem 1.33], where the explicit definition of
the isomorphism is given at the beginning of the proof on page 28. 2

It immediately follows that

(G(Ki((t))), γij × Id)i≤j∈I ∼= (G′′i [H], qij × Id)i≤j∈I . (2)

For each i ∈ I, let Γi be the saturated subgroup of G(Ki((t))) that corre-
sponds, by the isomorphisms above, to the saturated subgroup Θi of G′′i [H].
This then yields

(G(Ki((t)))/Γi, ˜γij × Id)i≤j∈I ∼= (G′′i [H]/Θi, ˜qij × Id)i≤j∈I

(where ˜γij × Id denotes the induced map on the quotients), which in turn
shows that we only have to find a projective system of fields realizing the

system (G(Ki((t)))/Γi, ˜γij × Id)i≤j∈I . Therefore, to keep notation simple, we
may assume that G(Ki)[H] = G′′i [H], Γi = Θi, γij × Id = qij × Id, and

that ˜qij × Id is the map from G(Ki)[H]/Θi → G(Kj)[H]/Θj induced by
γij × Id = qij × Id.

In this vein, for every i ≤ j ∈ I, we will write G(Mi) = G′′i [H], qij×Id will
stand for the morphism of special groups induced by the inclusion Mi ⊆Mj,
and the following diagram is commutative:

Ṁi
//

pi

��

Ṁj

pj

��
G(Mi)

qij×Id// G(Mj)

(3)
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(where pi and pj denote the canonical maps).
Define, for i ∈ I, ni := dimF2 Θi. Note that dimF2 Θi ≤ dimF2 H = 1, so

ni ∈ {0, 1}. Since (qij × Id) � Θi : Θi → Θj is injective, we have ni ≤ nj
whenever i ≤ j ∈ I. If ni = 1, write Θi = {1, aih}, with ai ∈ G′′i . In this
case, and if i ≤ j ∈ I, we have (qij × Id)(Θi) = Θj, so qij(ai) = aj.

Lemma 5.18 There is b ∈ Ṁ⊥ such that, for every i ∈ I, Θi ⊆ {1, pi(b)}.

Proof: For every i ≤ j ∈ I, the map qij is surjective. In particular the
map q⊥> is surjective and, by diagram (3) above, p>(Ṁ⊥) = Im(q⊥>× Id) =
G(M>). Let b ∈ Ṁ⊥ be such that {1, p>(b)} = Θ>. Let now i ∈ I and let
x ∈ Θi. Then (qi> × Id)(x) ∈ Θ> = {1, p>(b)}. If (qi> × Id)(x) = 1, we
get x = 1 ∈ {1, pi(b)}, because (qij × Id) �: Θi → Θj is an injective group
homomorphism. If (qi> × Id)(x) = p>(b), since diagram (3) is commutative,
we get p>(b) = (qi> × Id)(pi(b)), so (qi> × Id)(x) = (qi> × Id)(pi(b)) and we
conclude that x = pi(b). 2

We assume from now on that there is i ∈ I such that ni = 1 (or equiv-
alently n> = 1). Otherwise Θj = {1} for every j ∈ I, and the projec-
tive system of fields (Mi)i∈I realizes the projective system of special groups

(G′′i [H]/Θi, ˜qij × Id)i≤j∈I .
Recall that an element a of a special group T is called rigid when a 6= 1

and DT 〈1, a〉 = {1, a} and an element b of T is birigid when b and −b are
rigid. If T = G[H], then every element inG[H]\G is birigid (this is essentially
the only way to obtain birigid elements in a special group; see [5, Berman’s
Theorem on p. 12]).

Since we assume that ni = 1 for some i ∈ I (in other words n> = 1), it
follows that the element b produced in lemma 5.18 is birigid in Mi for every
i ∈ I.

The next proposition is [2, Proposition 8.2] and uses the following nota-
tion: If K is a field and a ∈ K then K( ∞

√
a) stands for K( 2n

√
a, n ∈ N).

Proposition 5.19 Let F be a field, let a be a birigid element in F (i.e.,
a ∈ Ḟ and a.Ḟ 2 is birigid in G(F )) and let ϕ be a quadratic form over F .
Let L := F ( ∞

√
a). Then

1. L̇ = Ḟ L̇2 and Ḟ ∩ L̇2 = Ḟ 2 ∪ aḞ 2;

2. ϕ is isotropic over L if and only if ϕ⊕ aϕ is isotropic over F .

We define, for i ∈ I:

Li =

{
Mi if ni = 0

Mi(
∞
√
b) if ni = 1
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Since ni = 1 implies nj = 1 whenever i ≤ j ∈ I, the system (Li)i∈I is
a projective system of fields. Note that the following diagram of fields is
obviously commutative (with the natural inclusions as morphisms)

Mi

��

// Mj

��
Li // Lj

which implies that the induced diagram of special groups is also commutative

G(Mi)

µi

��

qij×Id// G(Mj)

µj

��
G(Li)

τij // G(Lj)

(4)

where µi : G(Mi) → G(Li) is the map induced by Mi ⊆ Li and τij is the
map induced by Li ⊆ Lj.

Lemma 5.20 For i ∈ I, let πi : G(Ki)[H]→ G(Ki)[H]/Θi be the canonical
projection. Then

1. µi is surjective;

2. There is a unique isomorphism of special groups

ξi : G(Li)→ G(Ki)[H]/Θi

such that the following diagram is commutative

G(Mi)
µi //

λi
��

G(Li)

ξi
��

G(Ki)[H]
πi // G(Ki)[H]/Θi

In particular Li is Pythagorean.

Proof: The case ni = 0 is trivial, so we assume ni = 1. To avoid unneces-
sary notational complications, if K is a field and x ∈ K̇, we simply write x̄ for
the class of x in K̇/K̇2. By proposition 5.19 1 we know that µi is surjective
and that ker(µi ◦ λ−1

i ) = {1, λi(b̄)} = DG(Ki)[H]〈1, λi(b̄)〉. In particular, there
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is a unique isomorphism of groups ξi : G(Li) → G(Ki)[H]/{1, λi(b̄)} such
that the following diagram commutes.

G(Ki)[H]
λ−1
i //

πi
��

G(Mi)
µi // G(Li)

ξisshhhhhhhhhhhhhhhhhhhhhh

G(Ki)[H]/{1, λi(b̄)}

We show that ξi is an isomorphism of special groups. The image of −1 is
clearly −1. Let µi(c̄), µi(d̄) ∈ G(Li), where c, d ∈ Ṁi. We have

µi(c̄) ∈DG(Li)〈1, µi(d̄)〉 ⇔ c ∈ DLi
〈1, d〉

⇔ 〈〈−c, d〉〉 isotropic over Li

⇔ 〈〈−c, d〉〉 ⊕ b〈〈−c, d〉〉 isotropic over Mi

(by proposition 5.19 2)

⇔ 〈1, b〉 ⊗ 〈〈−c, d〉〉 isotropic over Mi

⇔ 〈1, b〉 ⊗ 〈〈−c, d〉〉 hyperbolic over Mi

(since Pfister forms are isotropic if and only if they are hyperbolic)

⇔ 〈1, λi(b̄)〉 ⊗ 〈〈−λi(c̄), λi(d̄)〉〉 hyperbolic in G(Ki)[H]

⇔ 〈1, λi(b̄)〉 ⊗ 〈〈−λi(c̄), λi(d̄)〉〉 ≡ 〈1, λi(b̄)〉 ⊗ 〈−1, 1,−1, 1〉
in G(Ki)[H]

⇔ 〈〈−πi ◦ λi(c̄), πi ◦ λi(d̄)〉〉 ≡ 〈−1, 1,−1, 1〉
in G(Ki)[H]/D〈1, λi(b̄)〉 = G(Ki)[H]/{1, λi(b̄)}

(by [5, Proposition 2.21])

⇔ 〈〈−πi ◦ λi(c̄), πi ◦ λi(d̄)〉〉 hyperbolic in G(Ki)[H]/{1, λi(b̄)}
⇔ πi ◦ λi(c̄) ∈ DG(Ki)[H]/{1,λi(b̄)}〈1, πi ◦ λi(d̄)〉,

which shows that ξi is an isomorphism of special groups. Since λi(b̄) is birigid
and |H| = 2, we obtain thatG(Li), being isomorphic toG(Ki)[H]/{1, λi(b̄)} ∼=
G(Ki), is a reduced special group or {1}, which entails that Li is a Pythagorean
field. 2

Recall that, using the identifications made after equation (2), we have,
for a ∈ K̇i and k ∈ {0, 1}:

( ˜qij × Id)((aK̇i
2
)hk ·Θi) = (aK̇j

2
)hk ·Θj.

29



Proposition 5.21 The following diagram commutes

G(Li)
τij //

ξi
��

G(Lj)

ξj
��

G(Ki)[H]/Θi

q̃ij×Id// G(Kj)[H]/Θj

In particular G((Li)i∈I) ∼= (G′′i [H]/Θi, ˜qij × Id)i≤j∈I , and lim
←−

G((Li)i∈I) ∼=
lim
←−

(Gi, fij)i≤j∈I .

Proof: Since µi and µj are surjective (see lemma 5.20 1), the commuta-
tive diagram in lemma 5.20 2 completely determines ξi and ξj. Let z =

µi(at
kṀi

2
) ∈ G(Li) (with a ∈ K̇i and k ∈ {0, 1}). Then

ξi(z) = ξi ◦ µi(atkṀi
2
)

= πi ◦ λi(atkṀi
2
) by lemma 5.20 2

= πi((aK̇i
2
)hk)

= ((aK̇i
2
)hk) ·Θi.

(5)

Applying this, we obtain

( ˜qij × Id) ◦ ξi(z) = ( ˜qij × Id)(((aK̇i
2
)hk) ·Θi)

= (aK̇j
2
)hk ·Θj,

and

ξj ◦ τij(z) = ξj ◦ τij ◦ µi(atkṀi
2
)

= ξj ◦ µj ◦ (qij × Id)(atkṀi
2
) by diagram (4)

= ξj ◦ µj(atkṀj
2
) since qij × Id is induced by Mi ⊆Mj

= (aK̇j
2
)hk ·Θj by (5),

which finishes the proof. 2
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