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Abstract. Non-split nonassociative quaternion algebras over fields were

first discovered over the real numbers independently by Dickson and Al-

bert. They were later classified over arbitrary fields by Waterhouse.

These algebras naturally appeared as the most interesting case in the

classification of the four-dimensional nonassociative algebras which con-

tain a separable field extension of the base field in their nucleus. We

investigate algebras of constant rank 4 over an arbitrary ring R which

contain a quadratic étale subalgebra S over R in their nucleus. A gen-

eralized Cayley-Dickson doubling process is introduced to construct a

special class of these algebras.

Introduction

Let k be a field. A non-split nonassociative quaternion algebra over k

is a four-dimensional unital k-algebra A whose nucleus is a separable qua-

dratic field extension of k. Non-split nonassociative quaternion algebras

were early examples of nonassociative division algebras which are neither

power-associative nor quadratic and were first considered by Dickson [D] in

1935, and by Albert [A] in 1942, both times over the reals. In 1987, Water-

house [W] completely classified these algebras as well as the corresponding

split nonassociative quaternion algebras (defined to be four-dimensional uni-

tal simple k-algebras whose nucleus is isomorphic to the split quadratic étale

algebra k⊕k) over arbitrary base fields, and computed their automorphisms

and derivations. Lee and Waterhouse [L-W], [L] later investigated maximal

R-orders in a nonassociative quaternion algebra A over k = Quot(R), R a

Dedekind domain, and classified certain isomorphism classes of these orders.

Let l be a quadratic étale algebra over k. A unital nonassociative k-

algebra A is called l-associative if l is contained in its nucleus. Given a sepa-

rable quadratic field extension l of the base field k, non-split nonassociative
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quaternion algebras over k naturally appeared as the only interesting (i.e.,

formerly unknown) case in the classification of the l-associative algebras of

dimension 4 over k in [W]. This was already observed by Althoen-Hansen-

Kugler [A-H-K] in the special case that k = R. Althoen-Hansen-Kugler

classified the C-associative R-algebras of dimension 4, and hence in partic-

ular also the non-split nonassociative quaternion algebras over R.

Read in the right way, Waterhouse’s classification reveals that every -

split or non-split - nonassociative quaternion algebra over a field k is a

classical Cayley-Dickson doubling of its nucleus S, where the scalar chosen

for this doubling process is an invertible element in S, not contained in the

base field. Hence this construction canonically extends the one known for

classical quaternion algebras over k.

Let R be a commutative associative unital ring. Let S be a quadratic

étale algebra over R. The term R-algebra refers to unital nonassociative

algebras over R which are finitely generated projective of constant rank as

R-modules. An R-algebra A is called S-associative if S is contained in its

nucleus. We obtain a general construction method for certain S-associative

algebras which contain S as a direct summand. Furthermore, we define

nonassociative quaternion algebras more generally as R-algebras which can

be generated by a generalized Cayley-Dickson process: over a ring R, every

“classical” (i.e., associative) quaternion algebra containing a quadratic étale

subalgebra S over R, can be realized by a Cayley-Dickson doubling process

Cay(S,P, h) with P a finitely generated right S-module of rank 1, and h : P×
P → S a nondegenerate 1-hermitian form (cf. Petersson [P]). This doubling

process can be adapted and then yields a special class of nonassociative S-

associative algebras over R: The idea is to take a nondegenerate ε-hermitian

form b : P × P → S instead of the nondegenerate 1-hermitian form h :

P × P → S. In particular, take an invertible scalar µ ∈ S not contained in

R then the form µh : P ×P → S is such an ε-hermitian form with ε = µ̄µ−1.

Thus nonassociative quaternion algebras are closely related to the classical

quaternion algebras.

Detailed examples are obtained considering special classes of rings.

1. Preliminaries

Let R be a unital commutative associative ring. The term “R-algebra”

refers to unital nonassociative algebras over R which are finitely generated

projective as R-modules of constant (local) rank. Let S be a quadratic étale
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algebra over R (i.e., a separable quadratic R-algebra in the sense of [Knu,

p. 4]) with canonical involution σ : S → S, also written as σ =−, and with

nondegenerate norm nS : S → S, nS(s) = ss = ss. S is a unital commutative

associative algebra over R, finitely generated projective of constant rank 2

as R-module. R × R (with the diagonal action of R) is a quadratic étale

algebra. Its canonical involution is given by (x, y) 7→ (y, x). A quadratic

étale algebra S which is isomorphic to the algebra R × R is called split,

otherwise it is called non-split.

For an R-algebra A, associativity in A is measured by the associator

[x, y, z] : = (xy)z − x(yz). The nucleus of A is defined as N(A) : = {x ∈
A | [x,A,A] = [A,x,A] = [A,A, x] = 0}. The nucleus is an associative

subalgebra of A (it may be zero), and x(yz) = (xy)z whenever one of the

elements x, y, z is in N(A).

An R-algebra A is S-associative if S is contained in the nucleus N(A).

C-associative algebras over R of dimension 4 were classified in [A-H-K], l-

associative algebras over an arbitrary base field k, l a separable quadratic

field extension of k in [W]. The only nonassociative algebras which appear

in these classification are the non-split nonassociative quaternion algebras

over R (or, respectively, over k). These algebras become split nonassociative

quaternion algebras under suitable base field extensions in the sense defined

before (e.g. under the field extension C if k = R as in [A-H-K]). We rephrase

this classification [W, Theorem 4, Theorem 5] as follows:

Lemma 1. Let k be a field and S be a quadratic étale algebra over k with

canonical involution σ =−. For every µ ∈ S× \ k, the vector space

Cay(S, µ) = S ⊕ S

becomes a (split or non-split) nonassociative quaternion algebra over k with

S = N(A) under the multiplication

(u, v)(u′, v′) = (uu′ + µv′v, v′u + vu′)

for u, u′, v, v′ ∈ S.

Given any (split or non-split) nonassociative quaternion algebra A over k

with nucleus N(A) = S, there exists an element µ ∈ S× \ k such that

A ∼= Cay(S, µ).

Proof. For J : = (0, 1) ∈ S ⊕ S we obtain A = Cay(S, µ) = S ⊕ SJ and the

multiplication of A becomes

(u + vJ)(u′ + v′J) = (uu′ + µv′v) + (v′u + vu′)J.
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In particular, J2 = µ, (1, 0) is the identity of A and Jx = xJ for all x ∈ S.

If S is non-split, the assertion follows from [W, Theorem 1].

If S is split, identify S with k × k. An element µ = (µ1, µ2) ∈ S lies

in k if and only if µ1 = µ2. It is invertible if and only if µ1µ2 6= 0. The

idempotents e1 = (1, 0) and e2 = (0, 1) in k × k are a basis for k × k.

Following [W, Proof of Theorem 5] define e3 = e1J , e4 = e2J to obtain a

basis for A. Then all products involving e1 or e2 are known, and e2
3 = 0,

e2
4 = 0, e3e4 = e1J

2e2 = µe1e2 = µ(1, 0)(0, 1) = µ(1, 0)(1, 0) = µe1 = (µ1, 0)

for µ = (µ1, µ2) ∈ k × k, e4e3 = µe2e1 = µ(0, 1)(0, 1) = µe2 = (0, µ2).

Moreover, e3e4 + e4e3 = (e3 + e4)
2 = J2 = µ ∈ S. By replacing e3 by the

scalar multiple 1
µ1

e3 we get e3e4 = e1, and e4e3 = µ2

µ1
e2. Put λ : = µ2

µ1
, then

the algebra A is of the type described in the multiplication table in [W,

Theorem 4], and thus a split nonassociative quaternion algebra. The rest of

the assertion follows from [W, Theorem 4]. �

This obviously extends the construction of “classical” quaternion alge-

bras over fields starting from a quadratic étale subalgebra: the case µ =

(µ1, µ2) ∈ S = k × k such that µ1 = µ2 6= 0 yields the split (associative)

quaternion algebra Mat2(k) over k (µ1 = µ2 is equivalent to µ = (µ1, µ2) ∈ k

here). The case µ ∈ k for a separable quadratic field extension S of k yields

either the associative quaternion algebra Cay(S, µ) over k (if µ 6= 0) or the

“degenerate associative quaternion algebra” Cay(S, 0). All non-split nonas-

sociative quaternion algebras over a field are division algebras which are

neither power-associative nor quadratic [W, p. 369].

2. S-associative algebras

We will mostly study S-associative algebras of rank 4.

For each prime ideal p ∈ SpecR, the residue class field is defined as

K(p) = Rp/pRp. Let A be an R-algebra. Its localization is given by Ap =

A⊗Rp and its residue class algebra is given by A(p) = A⊗Rp/pRp for each

p ∈ SpecR.

Lemma 2. Let S be a quadratic étale R-algebra. If A is an S-associative

R-algebra, then the localization Ap is an Sp-associative Rp-algebra for all

p ∈ SpecR, and the residue class field algebra A(p) is an S(p)-associative

K(p)-algebra for all p ∈ SpecR.

Proof. We have N(A) ⊗R R′ ⊂ N(A ⊗R R′) for any ring extension R′ of

R, and any unital R-algebra A. Hence N(A)p ⊂ N(Ap) and N(A) ⊗R
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K(p) ⊂ N(A(p)) for all p ∈ SpecR. In particular, this implies that the

algebra Ap = A⊗R Rp over the local ring Rp has the quadratic étale algebra

Sp in its nucleus for each p ∈ SpecR, and that the residue class algebra

A(p) = A ⊗R K(p) over K(p) has the quadratic étale algebra S(p) in its

nucleus for each p ∈ SpecR. �

Let S be a quadratic étale R-algebra with canonical involution σ =−. Let

A be an R-algebra which contains S in its nucleus. Then A is an S-bimodule

via S × A → A, (s, a) → sa and A × S → A, (a, s) → as. This implies in

particular that A must have even constant rank as an R-module.

The S-bimodule structure on A can be viewed as a left (or right) module

structure for the ring S ⊗ Sop. This ring is a quadratic étale algebra over S

and we have S ⊗ Sop ∼= S × S via x ⊗ y → (xy, xȳ) [Knu, p. 127].

The finitely generated projective left modules of rank one over the split

quadratic étale algebra S ×S are known. Any such module is isomorphic to

the direct sum of two invertible modules L and M in Pic(S) (see the proof

of [P, 2.7]). We conclude:

Lemma 3. Let A be an S-associative algebra of constant rank 4 over a

ring R. Suppose that A is finitely generated projective of rank one as an

S × S-module. Then

A ∼= L ⊕ M

for two invertible S-modules L and M .

To achieve a classification of the S-associative algebras of rank 4 over

arbitrary rings seems to be a complex problem, even if we require them to

be finitely generated projective of rank one as S × S-modules. Contrary

to the case studied in [W] (where only three types of bimodule structures

were possible provided that S was a separable quadratic field extension and

R a field) it is probably also not true anymore that the quadratic étale R-

algebra S is always a direct summand of A. To achieve at least a partial

classification of S-associative algebras one promising line of attack seems to

be to focus on certain classes of S-associative algebras over R. Another one

might be to restrict our attention to certain rings R and algebras S where

for instance the Picard group Pic(S) is small or even trivial.

One important class of S-associative R-algebras where S indeed is a direct

summand of A can be constructed as follows:
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Theorem 4. Let P be a finitely generated projective right S-module of con-

stant rank m carrying a sesquilinear form h : P×P → S. Then the R-module

A = S ⊕ P

becomes an S-associative R-algebra of constant even rank 2m + 2 via the

multiplication

(u,w)(u′, w′) = (uu′ + h(w′, w), w′ · u + w · u′)

for u, u′ ∈ S, w,w′ ∈ P . We write A = (S,P, h) for this algebra.

Proof. It is easy to check that S ⊆ N(A), hence A = (S,P, h) is an S-

associative algebra over R. �

Here are some easy examples of S-associative R-algebras of rank 4:

Example 1. (i) Let A be the direct product of S and any associative commu-

tative R-algebra A0 of rank 2. Then A = S⊕A0 is a commutative associative

S-associative R-algebra of rank 4. This “trivial” type of an S-associative al-

gebra appeared in Waterhouse’s classification in [W, Proposition 1] as type

1).

Indeed, if A is an S-associative R-algebra of rank 4 and if its S-bimodule

structure is given by A = S ⊕ A0 where xa = ax = 0 for all x ∈ S and

a ∈ A0, Waterhouse’s argument yields analogously that A must be the direct

product of S and A0.

(ii) Let 2 ∈ R×. Consider the rank 2 S-algebra (S,P, h) with P ∈ Pic S, and

h : P × P → S a (perhaps degenerate) 1-hermitian form. Then A is a com-

mutative associative S-associative R-algebra of rank 4 (see [W, Proposition

2], with bimodule structure of type 2)).

(iii) Suppose that S is a non-split quadratic étale algebra over R such that

the residue class algebras S(p) = Sp ⊗K(p) are non-split for all p ∈ SpecR.

Let A be an S-associative R-algebra of rank 4. We know that A is an S-

bimodule. If A also is an S-algebra (of constant rank 2) with identity 1 ∈ S

(as it can happen when R is a field and S a separable quadratic field exten-

sion of R, see [W, Proposition 2], type 2) in his classification), then A must

be commutative and associative, since these properties hold for all residue

class algebras S(p) [W, Proposition 2]. If, additionally, A is even finitely

generated projective and faithful as an S-module, then S1A is a direct sum-

mand of A [Knu p. 4].
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A simple calculation verifies the following result:

Lemma 5. Let A = (S,P, h). If N(A) ∩ P = {0} then N(A) = S.

Lemma 6. Let A = (S,P, h). If N(A) is a quadratic étale algebra over R,

then S = N(A).

Proof. By assumption, N(A) is a quadratic étale R-algebra. Since S is a

quadratic étale subalgebra of N(A), both must be equal: this is obvious

after passing to the stalks and then to the residue class algebras over K(p).

By Nakayama’s Lemma, the fact that these algebras are isomorphic over

K(p) carries over to local rings. �

If h : P × P → S is an (ε-)hermitian form and P a finitely generated

projective right S-module of rank one, the R-algebra A = (S,P, µh) with

µ ∈ S is also denoted by Cay(S,P, µh). The algebra A = Cay(S,P, µh) is

called a (generalized) Cayley-Dickson doubling of S. For ε = 1, µ ∈ R and h

nondegenerate, this construction method is due to Petersson [P].

The algebra S itself is canonically a (free) right S-module of rank one

which carries a nondegenerate 1-hermitian form. Any nondegenerate

1-hermitian form h : S × S → S is similar (with some similarity factor r ∈
R×) to the canonical 1-hermitian form given by the involution, i.e., to h0 :

(w,w′) 7→ ww′. In this special case the “classical” Cayley-Dickson doubling

process Cay(S, µ) = Cay(S, S, µh0) with µ ∈ S is obtained, which for µ ∈ R×

is due to Albert [A].

Remark 7. By [P, 2.5], every “classical” (i.e., associative) quaternion al-

gebra C over R containing a quadratic étale algebra S can be constructed

with the help of such a Cayley-Dickson doubling process, i.e., there exists a

nondegenerate 1-hermitian form h : P × P → S on P = S⊥, the orthogonal

complement of S in C relative to its norm nC , such that C ∼= Cay(S,P, h).

We later often restrict our attention to the special case that P is a finitely

generated projective right S-module of rank one carrying a nondegenerate

1-hermitian form h : P × P → S. On the one hand, for each invertible

µ ∈ S, the form µh : P × P → S is a nondegenerate ε-hermitian form, with

ε = µ/µ. (In particular, ε 6= 1 if and only if µ 6∈ R, and ε = −1 if and only

if µ ∈ Skew(S, ).)

On the other hand, the study of ε-hermitian forms over S can be reduced

to the study of 1-hermitian ones by scaling in several important cases: let
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µ ∈ S× such that µ
µ = ε. Then µh is a hermitian form, for any ε-hermitian

form h. Such a µ exists if H1(Z/2Z, S×) = 0 (Hilbert’s Theorem 90), e.g. if

PicR = 0 [Knu, p. 300].

Lemma 8. (i) For µ ∈ R and h a nondegenerate 1-hermitian form, A =

Cay(S,P, µh) is a quadratic associative R-algebra with norm nA((u,w)) : =

nS(u) − µh(w,w). It is a quaternion algebra if and only if µ ∈ R×.

(ii) Let A = Cay(S, µ) be a classical Cayley-Dickson doubling with scalar

µ ∈ S. Then A is nonassociative if and only if µ ∈ S \ R.

Proof. (i) Let µ ∈ R. Then nA : A → R, nA((u,w)) = nS(u)−µh(w,w) is a

quadratic form satisfying nA((1, 0)) = 1, and the equation a2−nA(1A, a)a+

nA(a)1A = 0 holds for each a ∈ A (here, nA(x, y) = nA(x+y)−nA(x)−nA(y)

is the symmetric bilinear form induced by nA). It is easy to check that, for

µ ∈ R, A is associative. A is a quaternion algebra if and only if nA is

nondegenerate [Mc, 4.6] which is equivalent to µ ∈ R×.

(ii) If µ ∈ R then A is associative. Suppose now that A is associative. It

follows that for every w1, w2, w3 ∈ S,

(0, w1)[(0, w2)(0, w3)] = [(0, w1)(0, w2)](0, w3), i.e.,

(0, w1)(µw̄3w2, 0) = (µw̄2w1, 0)(0, w3), i.e., (0, w1µ̄w̄2w3) = (0, w3µw̄2w1).

With wi = 1 we get µ̄ = µ, i.e., µ ∈ R. �

Lemma 8 (ii) also holds for generalized Cayley-Dickson doublings:

Corollary 9. Let A = Cay(S,P, µh) be a Cayley-Dickson doubling with

scalar µ ∈ S and a nondegenerate 1-hermitian form h. Then A is associative

if and only if µ ∈ R.

Proof. A = Cay(S,P, µh) is an associative R-algebra if and only if its local-

izations Ap = Cay(Sp, µphp) are associative Rp-algebras for each p ∈ SpecR.

The 1-hermitian form hp is nondegenerate for all p. Thus this is equivalent

to µp ∈ Rp for each p ∈ SpecR by Lemma 8(ii). This proves the assertion.

�

3. Nonassociative quaternion algebras

Remark 10. Consider the S-associative algebra A = (S,P, h) where h :

P × P → S is a sesquilinear form. The residue class algebras are given by

A(p) ∼= (S(p), S(p), h(p)), where h(p) : S(p)×S(p) → S(p) is the sesquilinear

form on S(p) induced by h. This form is of the kind h(p)(x, y) = x̄ay for

some a ∈ S(p) (a depending on the chosen p of course). Hence we have
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h(p) = ah0 with h0(x, y) = x̄y the canonical nondegenerate 1-hermitian

form on S(p). In other words,

A(p) ∼= Cay(S, a).

If a ∈ S× then h(p) is ε-hermitian with ε = ā/a and A(p) is a split or non-

split nonassociative quaternion algebra as in Waterhouse’s classification, or

a split or non-split quaternion algebra (if a ∈ R×). If a = 0 then A(p) is an

S-associative algebra of type 1) in [W]. If a 6= 0 and a is not invertible in

S(p), then S(p) must be a split quadratic étale algebra over K(p) and A(p)

is an S(p)-associative algebra which does not appear in Waterhouse classifi-

cation of the split nonassociative quaternion algebras, because he restricted

his classification to simple algebras, as soon as the nucleus was split. (By

[W], the split nonassociative quaternion algebras over K(p) are exactly the

Cayley-Dickson doublings of the split algebra S(p) with an invertible scalar

in S(p).)

Now let h : P × P → S be an ε-hermitian form. Then each h(p) :

S(p) × S(p) → S(p) is an ε(p)-hermitian form, with ε(p) = εp ⊗ 1 ∈ S(p).

There exists an element µ ∈ S(p)× (depending on p) such that µh(p) is a

1-hermitian form, either µh(p) = h0 or µh(p) = 0. This implies that either

A(p) ∼= Cay(S(p), µ−1) or A(p) ∼= Cay(S(p), 0), i.e., that A(p) is a nonas-

sociative quaternion algebra as in Waterhouse’s classification, a quaternion

algebra, or an S-associative algebra of type 1) in [W].

In particular, if h : P × P → S is a nondegenerate 1-hermitian form and

µ ∈ S×, then µh is an ε-hermitian form with ε = µ̄/µ. However, given any

ε-hermitian form it is not always possible to find an element µ to write this

form in the above way, unless we make additional requirements on our ring

R (cf. Example 4, where the non-trivial element in Pic S corresponds with

an ε ∈ S× satisfying εε̄ = 1, however, there is no element µ ∈ S× such that

ε = µ̄µ−1 by [K, III.(2.8.1)]).

This observation makes it clear that Waterhouse restriction to simple S-

associative algebras as soon as S was split is mirrowed in our more general

setup in the choice of the form h. If we limit ourselves to considering only

ε-hermitian forms h : P × P → S we will obtain only simple residue class

algebras A(p) as soon as S(p) is split (or the algebra A(p) ∼= Cay(S(p), 0)).

If we allow the most general case of h being a sesquilinear form we also

obtain S-associative algebras A(p) which were not mentioned in [W], when

S is split.
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Definition 11. Let S be a quadratic étale R-algebra. Let A be an S-

associative R-algebra. A is a nonassociative quaternion algebra over R if

A ∼= Cay(S,P, h) with h : P × P → S a nondegenerate ε-hermitian form.

A nonassociative quaternion algebra over R is called split, if S ∼= R × R is

split, otherwise non-split.

This implies: if A is a nonassociative quaternion algebra over R, the

residue class algebras A(p) are (nonassociative or associative) split or non-

split quaternion algebras over the residue class field K(p), or the “degen-

erate” algebra A(p) = Cay(S(p), 0), for each p ∈ SpecR. Obviously, A

has constant rank 4 as R-module. Furthermore, the algebra A(p) is either

simple, or A(p) = Cay(S(p), 0). Every non-split (associative or nonassocia-

tive) quaternion algebra over a field is indeed even a central simple division

algebra.

For R = k a field, our definition of a nonassociative quaternion algebra

deviates slightly from the one given in [W]: it includes both the case of a

split and a non-split nonassociative quaternion algebras, while Waterhouse

distinguished the non-split nonassociative quaternion algebras from the split

nonassociative quaternion algebras. Otherwise, it coincides with his defini-

tion, since we only allow nondegenerate 1-hermitian forms.

Lemma 12. If A is a nonassociative quaternion algebra over R then Ap is

a nonassociative quaternion algebra over Rp for each p ∈ SpecR.

Lemma 13. Let A be a nonassociative quaternion algebra over a local ring

R. Then A ∼= Cay(S, a) is a classical Cayley-Dickson doubling of S with

scalar a ∈ S×.

The proofs are obvious.

Proposition 14. Let A = Cay(S,P, µh) for some nondegenerate 1-hermitian

form h : P × P → S, and a scalar µ ∈ S \ R. If S is a domain (or if P is

torsion-free and µ̄ − µ not a zero divisor in S), then N(A) = S.

Proof. Obviously, S ⊂ N(A) is always true. Now let (e, e′) ∈ N(A) with

e ∈ S and e′ ∈ P . We have to show that this implies e′ = 0. The equation

(e, e′)((u,w)(u′, w′)) = ((e, e′)(u,w))(u′, w′)

implies that

e′µ̄h(w,w′) = w′µh(w, e′)
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for all w,w′ ∈ P and thus (put w′ = e′)

e′(µ̄ − µ)h(w, e′) = 0

for all w ∈ P . If h(w, e′) = 0 for all w ∈ P then e′ = 0 since h is nondegen-

erate and thus (e, e′) = (e, 0) ∈ S. Otherwise, there is one w ∈ P such that

h(w, e′) 6= 0. Then if S has no zero divisors, i.e., is a domain, P is torsion

free and we have e′ = 0 since µ̄−µ 6= 0 here. The same holds if P is torsion

free and µ̄ − µ not a zero divisor in S. �

In case 2 ∈ R× is an invertible element, the ring R is a subalgebra of S,

and S ∼= Cay(R,L, α) for a suitable selfdual element L ∈ Pic R and some

nondegenerate R-quadratic form α on L (see for instance [P]). In particular,

S ∼= R ⊕ L as R-module. The choice of the scalar µ ∈ S is reflected in the

residue class algebras of A = Cay(S,P, µh):

Proposition 15. Let 2 ∈ R× be invertible. Assume that S ∼= Cay(R, η) for

some η ∈ R×. Let µ ∈ S× \ R.

(i) If µ(p) 6∈ K(p) for each p ∈ SpecR then

µ = (µ1, µ2) ∈ R ⊕ R = S with µ2 ∈ R×.

(ii) In case S(p) is a non-split quadratic étale algebra over K(p) for all

p ∈ SpecR,

µ(p) 6∈ K(p) for each p ∈ SpecR

if and only if

µ = (µ1, µ2) ∈ R ⊕ R = S with µ2 ∈ R×.

Proof. (i) Let µ ∈ S×. Write µ = (µ1, µ2) ∈ R ⊕ R = S. Then µ(p) 6∈ K(p)

for every p ∈ SpecR if and only if µ2,p 6∈ pRp, for all p ∈ SpecR where S(p)

is non-split, and µ1,p 6= µ2,p, µ1,p 6∈ pRp, µ2,p 6∈ pRp for all p ∈ SpecR where

S(p) is split. This in turn is equivalent to µ2,p ∈ R×
p for all p ∈ SpecR where

S(p) is non-split and to µ1,p 6= µ2,p, µ1,p ∈ R×
p , µ2,p ∈ R×

p for all p ∈ SpecR

where S(p) is split. It follows that µ2 ∈ R×.

(ii) Let S be such that S(p) is a non-split quadratic étale algebra over

K(p) for all p ∈ SpecR. Then µ(p) 6∈ K(p) for every p ∈ SpecR if and only

if µ2,p 6∈ pRp, for all p ∈ SpecR, which is equivalent to µ2,p ∈ R×
p for all

p ∈ SpecR. This is equivalent to µ2 ∈ R×. �

Since µ ∈ S× is equivalent to nS(µ) ∈ R×, in the above setting of (ii) we

have for µ = (µ1, µ2) ∈ R ⊕ R = S that µ = (µ1, µ2) ∈ S× if and only if

µ2
1 − ηµ2

2 ∈ R×.
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Localization does not affect the scalars:

Lemma 16. Let R be a domain such that 2 ∈ R×. Take µ ∈ S×. Then

µ ∈ S× \ R if and only if µp ∈ S×
p \ Rp, for all p ∈ SpecR.

Proof. Let µ ∈ S× \ R. Since S = Cay(R,L, α) write µ = (µ1, µ2) with

µ1 ∈ R, 0 6= µ2 ∈ L. (If S is non-split, the condition that µ ∈ S× \R implies

0 6= µ2 ∈ L. If S is split, µ ∈ S× \ R automatically translates to µ1 6= µ2

and µ1µ2 ∈ R× which implies 0 6= µ2 ∈ L.) Consider the morphism Ψ given

by the multiplication by µ2, i.e., the sequence

ker Ψ −→ R −→ L,

r 7−→ µ2r.

Since L is projective, the sequence splits. Since R is a domain, R ∼=
ker Ψ ⊕ Ψ(R) implies ker Ψ = 0. Thus Ψ is injective, and hence so is Ψp.

Suppose that Sp is non-split. The injectivity of Ψp implies that µprp =

((µ1)prp, (µ2)prp) 6∈ Rp for every rp ∈ Rp and every p ∈ SpecR where

Sp is non-split. It follows that µp 6∈ Rp for every p ∈ SpecR where Sp

is non-split. If, on the other hand, Sp is split, we get analogously that

µprp = ((µ1)rp, (µ2)prp) 6∈ Rp for every r ∈ Rp since (µ1)prp 6= (µ2)prp. It

follows that µp 6∈ Rp for every p ∈ SpecR where Sp is split, too.

The converse is obvious. �

We take a closer look at the case where S is split.

Proposition 17. Let S be a split quadratic étale algebra over R. Let A ∼=
Cay(S,P, µh) with a scalar µ ∈ S and a nondegenerate 1-hermitian form h.

(i) If µ ∈ R× then there exists an invertible module L ∈ PicR and an

isomorphism such that

A ∼= EndR(R ⊕ L) =

(
R

L∨

L

R

)

is an associative split quaternion algebra over R where the algebra structure

of the right-hand-side is given by the ordinary matrix multiplication.

(ii) For µ = (µ1, µ2) 6∈ R and µi ∈ R× for i = 1, 2 (hence in particular µ ∈
S× here), there exists an invertible module L ∈ Pic R and an isomorphism

A ∼= (EndR(R ⊕ L), ◦µ) =

((
R

L∨

L

R

)
, ◦µ
)
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sending R×R to the diagonal of EndR(R ⊕L), where the multiplication on

the module EndR(R ⊕ L) is defined by

(a

š

s

b

)
◦ µ

(
c

ť

t

d

)
=

(
ac + µ1

µ2
ť(s)

šc + ťb

ta + sd

š(t) + bd

)

Proof. Let S be a split quadratic étale algebra over R. Let A ∼= Cay(S,P, µh)

be a Cayley-Dickson doubling where µ ∈ S. Identify S with R×R. By [Knu,

V (6.2.2), p. 302], any nondegenerate 1-hermitian space (P, h) of rank one

over S is hyperbolic, i.e., (P, h) ∼= (L ⊕ L∨, εH) for suitable L ∈ PicR,

ε ∈ R×, where H denotes the hyperbolic hermitian form on L ⊕ L∨ given

by (s, š)(t, ť) = ε(〈s, ť〉, 〈t, š〉) for s, t ∈ L, š, ť ∈ L∨. The map 〈, 〉 is the

canonical pairing L×L∨ → R as in [P, 2.7]. (The quadratic form associated

with H is the hyperbolic quadratic form on the R-module L ⊕ L∨.) Hence

A ∼= Cay(S,P, µεH) ∼= Cay(S,P, µh). Put µ = (µ1, µ2) ∈ S = R × R.

(i) If µ ∈ R (which is equivalent to µ1 = µ2) then A is an associative algebra

over R. If in addition µ is invertible, then this algebra is isomorphic to a split

(associative) quaternion algebra over R, i.e., to the algebra EndR(R ⊕ L)

where the algebra structure is given by the ordinary matrix multiplication

[P, 2.7].

(ii) If µ 6∈ R (which is equivalent to µ1 6= µ2) then A is a nonassociative

algebra over R. If in addition the µi, i = 1, 2 are invertible (which implies

µ ∈ S×), then this algebra is isomorphic to the following algebra over R:

let µ = (µ1, µ2) ∈ S = R × R, µi ∈ R× for i = 1, 2. Consider the module

EndR(L ⊕ R) =
(

R
L∨

L
R

)
equipped with the multiplication given by

(a

š

s

b

)
◦
(

c

ť

t

d

)
=

(
ac + µ1

µ2
ť(s)

šc + ťb

ta + sd

š(t) + bd

)
.

(This becomes again the ordinary matrix multiplication for µ1 = µ2, i.e., for

µ ∈ R×.) Denote this algebra by (EndR(L ⊕ R), ◦µ). Then

ϕ : Cay(S,P, µn0) −→
((

R

L∨

L

R

)
, ◦µ
)

defined by

ϕ((a, b), (s, š)) =

(
a

µ2

µ1
š

µ1s

b

)

for a, b ∈ R, s ∈ L, š ∈ L∨, is an isomorphism of R-algebras. �

The classical Cayley-Dickson doubling of a split algebra S is contained

here as a special case: the algebra Cay(S, µ) for µ = (µ1, µ2) ∈ S \ R and
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µi ∈ R× for i = 1, 2 satisfies the multiplication table of [W, Theorem 4] with

λ = µ̄/µ for the case that R is a field.

Remark 18. Let A ∼= Cay(S,P, µh) with S a non-split quadratic étale

algebra over R, a nondegenerate 1-hermitian form h, and with µ ∈ S.

Let R′ be a ring extension of R containing S. Then S ⊗R R′ is the split

quadratic étale algebra over R′ and we have the canonical isomorphism

S ⊗R R′ ∼= R′ × R′ given by b ⊗ 1 7→ (b, b̄). If µ ∈ S is invertible, then

so is µ′ = (µ, µ̄) in R′ × R′ and in particular, we have µ, µ̄ ∈ R′×. Hence

Cay(S,P, µh)⊗R′ ∼= Cay(R′ ×R′, P ⊗R′, µ′(h⊗R′)) ∼= (EndR(R⊕L), ◦µ′)

with P ⊗ R′ ∼= L ⊕ L∨ as R′ × R′-module, for a suitable L ∈ PicR′.

For any R-algebra A which contains a quadratic étale subalgebra S, define

S̃ : = {x ∈ A |xs = sx for all s ∈ S}. Take for instance the classical

quaternion algebra of Hamilton, the R-division algebra H = Cay(C,−1).

Here, S̃ = Cj for S = C, where 1, i, j, ij denotes the standard basis of H.

S̃ becomes a right S-module by the action

S̃ × S −→ S̃, (w, s) 7−→ sw,

where the right-hand side is the multiplication in A. Obviously, P ⊂ S̃ for

A = (S,P, h). The following lemma is needed to show that we even have

equality here when 2 ∈ R× and R is a domain:

Lemma 19. Let S be a quadratic étale algebra over R. Let A be an R-

algebra containing S.

(i) If S is split, then S ∩ S̃ = 0.

(ii) Let 2 ∈ R× and let R be a domain, then S ∩ S̃ = 0 also in case S is

non-split.

Proof. (i) Assume first that S is a split quadratic étale algebra, i.e., that

S = R × R and write x = (r1, r2), s = (s1, s2) ∈ R × R = S. The canonical

involution is given by (s1, s2) = (s2, s1). Let x ∈ S such that x(s− s̄) = 0 for

all s ∈ S. Then x(s − s̄) = (r1, r2)(s1 − s2, s2 − s1) = (r1(s1 − s2),−r2(s1 −
s2)) = 0 for all s ∈ S. Put s2 = 1, s1 = 2 to obtain r2 = 0, r1 = 0 and thus

x = 0.

(ii) If S is a quadratic étale algebra, then S = Cay(R,L, α) since 2 ∈ R×.

Write x = (r1, r2), s = (s1, s2) ∈ Cay(R,L, α). The canonical involution is

given by (s1, s2) = (s1,−s2). Let x ∈ S such that x(s− s̄) = 0 for all s ∈ S.

Then x(s− s̄) = (r1, r2)(0, 2s2) = (α(2s2, r2), 2s2r1) = 0 for all s ∈ S. Hence

s2r1 = 0 and α(2s2, r2) = 0 for all s2 ∈ L. If R is a domain, L is torsion
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free. Therefore this implies r1 = 0. Since α : L×L → R is a nondegenerate

quadratic form, we also obtain r2 = 0 this way. �

Corollary 20. Let A = (S,P, h). If 2 ∈ R× and if R is a domain, then

P = S̃ and, in particular, A = S ⊕ S̃.

The proof is straightforward and uses the above lemma.

Lemma 21. Let A be an R-algebra which contains a quadratic étale sub-

algebra S. Then ˜(S ⊗R R′) = S̃ ⊗R R′, for any flat ring extension R′ of

R.

Proof. The quadratic étale R-algebra S is generated by a finite set of ele-

ments Σ over R, thus S̃ = {x ∈ A|xs = s̄x for all s ∈ Σ} and the quadratic

étale algebra S⊗R R′ is generated by the finite set {s⊗1|s ∈ Σ}. We obtain
˜(S ⊗R R′) = {x ∈ A ⊗R R′ | x(s ⊗ 1) = (s ⊗ 1)x for all s ∈ Σ}.

For s ∈ S define φs by φs(x) = xs − s̄x and φ : A → ∏
s∈Σ A by a 7→

(φs(a))s∈Σ. φ is an R-module homomorphism such that ker(φ) = S̃. Ten-

soring the exact sequence 0 → ker(φ) → A
φ→ Im(φ) → 0 by R′, it follows

that S̃⊗R′ = ker(φ)⊗R′ = ker(φ⊗1R′). So we just have to show that ker(φ⊗
1R′) = ˜(S ⊗ R′), where ker(φ⊗1R′) = {∑ ai⊗ri ∈ A⊗R′ | ∑φ(ai)⊗ri = 0}.
Since

∑
φ(ai)⊗ ri =

∑
(ais− s̄ai)s∈Σ⊗ ri = (

∑
(ais− s̄ai)⊗ ri)s∈Σ (the last

equality comes from the canonical isomorphism between (
∏

s∈Σ A)⊗R′ and∏
s∈Σ(A ⊗ R′), which holds since Σ is finite), we have

ker(φ ⊗ 1R′) = {∑ ai ⊗ ri ∈ A ⊗ R′ | ∀s ∈ Σ
∑

(ais − s̄ai) ⊗ ri = 0}.
We now prove both inclusions in the equality ker(φ ⊗ 1R′) = ˜(S ⊗ R′):

“⊆” Let x =
∑

i ai ⊗ ri ∈ ker(φ ⊗ 1R′) with ri ∈ R′, ai ∈ A, and let s ∈ S.

Then

x(s ⊗ 1) − (s ⊗ 1)x = (
∑

i ai ⊗ ri)(s ⊗ 1) − (s ⊗ 1)(
∑

i ai ⊗ ri)

=
∑

i(ai ⊗ ri)(s ⊗ 1) −∑i (s ⊗ 1)(ai ⊗ ri)

=
∑

i((ais) ⊗ ri − (s̄ai) ⊗ ri)

=
∑

i(ais − s̄ai) ⊗ ri

= 0.

“⊇” Suppose x =
∑

i ai ⊗ ri ∈ A ⊗ R′ is such that x(s ⊗ 1R′) = (s ⊗ 1R′)x

for every s ∈ Σ. Then x(s⊗ 1R′)− (s ⊗ 1R′)x =
∑

i ais⊗ ri −
∑

i s̄ai ⊗ ri =∑
i(ais − s̄ai) ⊗ ri = 0, for every s ∈ S. This proves x ∈ ker(1R′ ⊗ φ).

Corollary 22. Let A be an R-algebra which contains a quadratic étale sub-

algebra S. Then (̃Sp) = (S̃)p for all p ∈ SpecR.
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Proof. Since Sp = S ⊗R Rp and Rp is flat over R, the assertion follows from

the last lemma. �

Proposition 23. Let A be an S-associative algebra over R such that A =

S ⊕ S̃ as S-module. Suppose in addition that S̃ is a finitely generated pro-

jective right S-module of rank one. Then there exists a sesquilinear form

h : S̃ × S̃ → S such that A ∼= (S, S̃, h).

Proof. We know that S̃ becomes a right S-module by the action

S̃ × S −→ S̃, (w, s) 7−→ sw,

where the right-hand side is the multiplication in A. By assumption we also

know that S̃ is even a finitely generated projective right S-module. Define

h : S̃ × S̃ → S

(x, y) 7→ xy .

then h is a sesquilinear form and A ∼= (S, S̃, h). �

4. Automorphisms

Let S and S′ be two quadratic étale algebras over R. Let both A and A′

be two S-associative respectively S′-associative algebras over R of rank 4

such that N(A) = S and N(A′) = S′. Since any isomorphism preserves the

nucleus, the algebras A and A′ can be isomorphic only if they have - up to

isomorphism - the same quadratic étale algebra as their nucleus.

Suppose that S = S′. Let Z2(R) be the group of idempotents of R with

the operation λ+̇λ′ : = λ + λ′ − 2λλ′, then Aut(S) ∼= Z2(R). The map

induced on S by an isomorphism Φ: A
∼−→ A′ is an automorphism of S. If

S ∼= R × R is split then Aut(R × R) ∼= Z2 [Knu, p. 128 ff].

Suppose that S is a domain. Let A = Cay(S, µ) and A′ = Cay(S, µ′)

be two “classical” Cayley-Dickson doublings, with µ, µ′ ∈ S× \ R . Then

N(A) = S = N(A′) and both A and A′ are non-split nonassociative quater-

nion algebras. Define J = (0, 1) ∈ A, J ′ = (0, 1) ∈ A′. Then A = S ⊕ SJ ,

A′ = S ⊕ SJ ′ as in [W]. The subspace SJ must be mapped to SJ ′, since

it is determined by its relation to the 2-sided multiplication by S. Thus, if

Φ(J) = εJ ′ for some ε ∈ S×, Φ(µ) = Φ(J2) = (εJ ′)(εJ ′) = εεJ ′2 = εεµ′

[W, Theorem 2].
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Conversely, any ϕ ∈ Aut(S) and any ε ∈ S× such that ϕ(µ) = εεµ′, gives

a (unique) isomorphism

Φ: S ⊕ SJ −→ S ⊕ SJ ′,

u + vJ 7−→ ϕ(u) + ϕ(v)εJ ′.

In this more general setting, [W, Theorem 2] becomes

Theorem 24. Let S be a domain. Suppose A = Cay(S, µ), A′ = Cay(S, µ′)

are two algebras over R which are classical Cayley-Dickson doublings of

S with invertible scalars µ, µ′ ∈ S. Then A ∼= A′ if and only if ϕ(µ) =

εεµ′ for some ϕ ∈ Aut(S), and some ε ∈ S×.

Every ϕ ∈ Aut(S) such that there exists ε ∈ S× with ϕ(µ) = εεµ′ induces

an isomorphism

Φ: A −→ A′, Φ((u, v)) = (ϕ(u), εϕ(v)).

Note that for R connected (or R local), Aut(S) = {id, σS} [K, p.128, p. 301].

However, in general Aut(S) may contain more that these two maps.

Corollary 25. Let A = Cay(S, µ) be a classical Cayley-Dickson doubling of

a domain S as in Theorem 24. Let ϕ ∈ Aut(S). Then:

• For all ϕ such that ϕ(µ) = µ, the map Φ((u, v)) = (ϕ(u), ϕ(v)ε) is

an element of Aut(A), for any ε ∈ S× satisfying εε̄ = nS/R(ε) = 1.

• If there exists ε ∈ S× s.t. −1 = εε̄ = nS/R(ε), then for all ϕ such

that ϕ(µ) = µ̄, the map Φ((u, v)) = (ϕ(u), ϕ(v)ε) is an element of

Aut(A).

• If µ ≡ ϕ(µ)mod nS/R(S×), and ϕ(µ) 6= µ, µ̄, then the map Φ((u, v)) =

(ϕ(u), ϕ(v)ε) is an element of Aut(A), for any ε ∈ S× with µ =

εε̄ϕ(µ).

These are all the automorphisms of A.

Now let A = Cay(S,P, µh) and A′ = Cay(S,P ′, µ′h′) be two S-associative

algebras with h and h′ nondegenerate 1-hermitian forms and with µ, µ′ ∈
S× \ R. We still assume that S is a domain. Take an algebra isomorphism

Φ: A
∼−→ A′, then again ϕ : = Φ|S ∈ Aut(S), and Φ|P : P

∼−→ P ′ is an

R-module isomorphism (which is easy to check locally). Furthermore, for

all w ∈ P , s ∈ S,

Φ(w · s) = Φ(w)ϕ(s).

If ϕ = id or ϕ = σ then Φ|P is S-linear or σ-semilinear, thus (P, n) ∼=
(P ′, λn′) for some λ ∈ R× if n(w) = h(w,w) denotes a norm on P , and
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n′(w) : = h′(w′, w′) a norm on P ′ in the sense of [P]. Moreover, P ′ ∼= P or

P ′ ∼= P as S-modules, where P is P with the action of S twisted through

σ. If R is connected, then also (P, h) ∼= (P ′, λh′) or (P, h) ∼= (P ′, λh′) holds

[Knu, V. (6.1.3), (6.1.4), p. 301]. Since Φ is multiplicative,

Φ((0, v)(0, v′)) = Φ(µh(v′, v), 0) = (ϕ(µ)ϕh(v′, v), 0)

and

Φ((0, v))Φ((0, v′)) = (µ′h′(Φ(v′),Φ(v)), 0)

imply that

ϕ(µ)ϕh(v′, v) = µ′h′(Φ(v′),Φ(v)).

For ϕ = id or ϕ = σ this is equivalent to

µh(v′, v) = µ′h′(Φ(v′),Φ(v)) (if ϕ = id), or to

µh(v′, v) = µ′h′(Φ(v′),Φ(v)) (if ϕ = σ),

with h(v′, v) : = h(v′, v) the hermitian form on P . We observe that µh is

an ε-hermitian form on P , with ε = µ
µ , and µ′h′ an ε′-hermitian form, with

ε′ = µ′

µ′ . If R is connected we know from above that (P, h) ∼= (P ′, λh′) if

ϕ = id, and (P, h) ∼= (P ′, λh′) if ϕ = σ. Hence µ′ = µλ and µh and µ′h′ are

isometric ε-hermitian forms on P . Analogously, if ϕ = σ then µh and µ′h′

are isometric ε′-hermitian forms on P . We have proved

Theorem 26. Let S be a domain. Let A = Cay(S,P, µh) and A′ =

Cay(S,P ′, µ′h′) be two nonassociative quaternion algebras over a connected

ring R with h and h′ nondegenerate 1-hermitian forms and with µ, µ′ ∈
S× \ R. If A and A′ are isomorphic algebras then

(P, µh) ∼= (P ′, µ′h′) are isometric ε-hermitian forms in case Φ|S = id, and

(P , µh) ∼= (P ′, µ′h′) are isometric ε-hermitian forms in case Φ|S = σ.

5. Examples

Let k be a field of characteristic not 2.

1) Let R be the polynomial ring k[t]. By [P, 6.8], any quadratic étale

algebra S and any quaternion algebra over R are defined over k. Therefore

either S is a domain and we have S = S0 ⊗k R, where S0 is a separable

quadratic field extension of k, or S = R × R is split. Since R is a principal

ideal domain, Pic(R) = 0. Thus every nondegenerate ε-hermitian form can

be obtained from a nondegenerate 1-hermitian form by multiplication with

a suitable scalar µ ∈ S×.
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Every split nonassociative quaternion algebra A is isomorphic to an alge-

bra of the kind Cay(S, µ) for some invertible µ ∈ S \ R.

If S = k(
√

c) ⊗k R with k(
√

c) a separable quadratic field extension of k,

then S ∼= k(
√

c)[t] is also a principal ideal domain, and we conclude that

PicS = 0. Therefore every non-split quaternion algebra A is isomorphic to

Cay(k(
√

c)⊗k R,µ) with a suitable element µ ∈ k(
√

c)× \ k, and N(A) = S.

2) Let R = k[t, 1
t ] be the ring of Laurent polynomials. Since this is

again a principal ideal domain, every nondegenerate ε-hermitian form can

be obtained from a nondegenerate 1-hermitian form by multiplication with

a suitable scalar µ ∈ S×. Moreover, any quadratic étale algebra over R and

any quaternion algebra over R with zero divisors splits, the latter being iso-

morphic to Mat2(R). This implies that any split nonassociative quaternion

algebra A over R is isomorphic to Cay(S, η) with S = R × R, η ∈ S× \ R.

A non-split quadratic étale algebra S is a domain and either isomorphic

to k(
√

c) ⊗k R or to Cay(R,µt) with µ ∈ k×.

In case S = k(
√

c) ⊗k R ∼= k(
√

c)[t, 1
t ], Pic S is trivial and A ∼= Cay(S, η)

with η ∈ S× \ R, that is η = η1t
j +

√
cη2t

j with η1, η2 ∈ k, η2 6= 0. Each

such algebra has S as its nucleus.

If S = Cay(R,µt) then a (classical) quaternion algebra C over R contain-

ing S as a subalgebra is isomorphic to C = Cay(S,P, nP ) ∼= Cay(k(
√

c) ⊗k

R,λt), λ ∈ k×, provided that C is not defined over k. Since nP
∼= 〈α1t

ε1,

α2t
ε2〉 by [Kn, 13.4.4] with εi ∈ {0, 1}, αi ∈ k×, the norm of C is given

by 〈1,−c,−λt, λct〉 ∼= 〈1,−µt,−α1t
ε1,−α2t

ε2〉 with ε1 + ε2 = 1, −α2 ≡
µα1t

1+ε1+ε. Moreover, k(
√

c) ⊗ R ∼= k(
√

α1) ⊗ R, since the quadratic étale

algebra S contained in C is unique up to isomorphism [Pu1, 3.10]. It follows

that nP
∼= 〈α1,−µα1t〉 ∼= α1〈1, −µt〉. By [Knu, III.(7.3.3)] this implies that

P and S are isomorphic S-modules. Thus every nonassociative quaternion

algebra A with S = Cay(R,µt) as its nucleus is isomorphic to Cay(S, η) for

a suitable η ∈ S× \ R, that is, η = (η1, εt
j) ∈ S = R ⊕ R for some ε ∈ k×.

3) Let 〈1,−a,−b〉k be an anisotropic quadratic form. Take R to be

the ring k[t,
√

at2 + b]. R is a quadratic extension of k[t] and Quot(R) =

k(t,
√

at2 + b). The units of R are exactly the units of k, i.e., R× = k×. R

is a principal ideal domain [Pf, Proposition 1]. Thus every nondegenerate

ε-hermitian form can be obtained from a nondegenerate 1-hermitian form by

multiplication with a suitable scalar µ ∈ S×. Furthermore, every quadratic

étale algebra over R containing zero divisors is isomorphic to R × R, and

any quaternion algebra over R with zero divisors is isomorphic to Mat2(R).
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Every nondegenerate quadratic form over R can be viewed as an unimodular

R-lattice in the sense of [Pf]. We choose k as well as a, b ∈ k× in such a way

that there exist orthogonally indecomposable binary unimodular R-lattices.

In particular, this implies the existence of splitting fields k(
√

c) of (a, b)k

not isomorphic to k(
√

a). If the choice of k and a, b ∈ k× does not permit

such lattices over R (e.g., k = R, a = b = 1) it is obvious from [Pu2, 2.4]

that every quaternion algebra over R is already defined over k.

Results from Kneser [Kn] show that every quadratic étale algebra over R

is defined over k. Every quaternion algebra over R which is not defined over

k is isomorphic to Cay(k(
√

c) ⊗k R, Ic, L(α)) with detL(α) = −c by [Pu2,

2.4].

In particular, Pic (k(
√

c) ⊗k R) is trivial if k(
√

c) is not a splitting field

of (a, b)k, or if k(
√

c) ∼= k(
√

a), otherwise it contains only one non-trivial

element, denoted by Ic. For the definition of the indecomposable binary

R-lattice L(α) the reader is referred to [Pf]. These results can again be used

to list all nonassociative quaternion algebras A over R.

A split nonassociative quaternion algebra A is isomorphic to an algebra

of the kind Cay(S, η) for some invertible η ∈ S = R × R, η 6∈ R.

If a non-split nonassociative quaternion algebra A has S = k(
√

c)⊗k R as

nucleus, we know that Pic S = 0 if k(
√

c) is not a splitting field of (a, b)k,

or if k(
√

c) ∼= k(
√

a). In this case, the algebra is isomorphic to Cay(S, η) for

some η ∈ S× \ R.

If k(
√

c) is a quadratic splitting field of (a, b)k which is not isomorphic to

k(
√

a), a nonassociative quaternion algebra A with nucleus S = k(
√

c) ⊗k

R is either isomorphic to the classical Cayley-Dickson doubling Cay(S, η)

with an invertible η ∈ S \ R, or it is isomorphic to Cay(S, Ic, ηL(α)) where

L(α) = 〈
(

α
β

β
γ

)
〉 is an orthogonally indecomposable binary R-lattice with

detL(α) = −c, and η ∈ S×\R is a suitable element. Note that in the second

case, S ∼= k(
√

c)[x0, x1](x2

0
−ax2

1
), with x0, x1 indeterminates over k(

√
c).

4) Every point P0 ∈ P1
k = Proj k[x0, x1] of degree two is represented by the

principal ideal generated by a monic polynomial f(t) = t2−a ∈ k[t] of degree

two. Removing P0 from P1
k results in the affine scheme SpecR = P1

k − {P0}
of a ring R, with

R = {g(t)/f(t)j ∈ k(t) | j ≥ 0, y(t) ∈ k[t] with deg g ≤ 2j}
∼= k[x0, x1](x2

0
−ax2

1
).
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Let R be this ring of f -fractions. R is a Dedekind domain with Quot(R) =

k(t), the set of invertible elements of R is given by k×. The ideal class

group of R, which is isomorphic to Pic R here, contains two elements, i.e.,

is isomorphic to Z2.

In this case we are not able to say that each ε-hermitian form can be

obtained by scaling a 1-hermitian form, hence we are only able to describe all

those nonassociative quaternion algebras which arise by taking a 1-hermitian

form and scaling it with an invertible element µ ∈ S. There still might be

others.

Let L denote the non-trivial element in PicR, then L is isomorphic to the

ideal
(

1
(t2−a)

, t
(t2−a)

)
in R as an R-module [Pu3, 2.1]. L has norm one, and

N0 : L → R given by

N0

(
1

t2−a

)
= 1

t2−a
, N0

(
t

t2−a

)
= t2

t2−a
,

N0

(
1

t2−a , t
t2−a

)
= 2t

t2−a

is a norm on L satisfying N0 ⊗k k(t) ∼= 〈t2 − a〉k(t). Every quadratic étale

algebra over R is either defined over k, or isomorphic to Cay(R,L, µN0) for

a suitably µ ∈ k× [Pu3, 2.5].

If S = k(
√

c) ⊗k R is a non-split quadratic étale algebra defined over k,

then Pic S is trivial in case k(
√

c) ∼= k(
√

a), and isomorphic to Z2 otherwise.

In the latter case let Ec be the nontrivial element in this Picard group, then

Ec is isomorphic to the ideal
(

1
t2−a

, t
t2−a

)
in S as an S-module [Pu3, 2.6].

Ec has norm one, Ec = L⊕L as an R-module, and N(c) : Ec → R given by

N(c) : = N0 ⊕ (−c)N0 is a norm on Ec by [Pu3, 2.7].

Thus we can list all split and non-split nonassociative quaternion alge-

bras A over R where the ε-hermitian forms used in their construction are

obtained by scaling a 1-hermitian form with some µ ∈ S×: every such split

nonassociative quaternion algebra A is isomorphic to an algebra of the kind

Cay(S, η) or Cay(S,L⊕L∨, ηh0) with an invertible η ∈ S\R and S = R×R.

Let A be non-split with nucleus containing S = k(
√

a) ⊗k R. Here,

S = k(
√

a)

[
t +

√
a

t −√
a
,
t −√

a

t +
√

a

]

is a ring of Laurent-polynomials over k(
√

a). It follows that A ∼= Cay(S, η)

with a suitable η ∈ S \ R invertible.

Let A be non-split with nucleus containing S = k(
√

c)⊗k R, where k(
√

c)

is not isomorphic to k(
√

a). Then A ∼= Cay(S, η) or A ∼= Cay(S,Ec, ηN(c))

with η ∈ S× \ R.
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