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1 Introduction

It is well-known that any two real closed fields R and S are elementarily
equivalent. We can then consider some simple constructions of new structures
out of real closed fields, and try to determine if these constructions, when
applied to R and S, give elementarily equivalent structures. We can for
instance consider def(Rn, R), the ring of definable functions from Rn to R,
and we obtain without difficulty that the rings def(Rn, R) and def(Sn, S) are
elementarily equivalent ([A]).

However, if we consider cdef(Rn, R), the ring of continuous definable func-
tions from Rn to R, the situation becomes more complicated: Unpublished
results of M. Tressl show that, for n > 1, cdef(Rn, R) defines the set of con-
stant functions with integer value, by a formula that is independent of R and
n. Therefore we may have cdef(Rn, R) 6≡ cdef(Sn, S), for instance if one field
is Archimedean and the other not.

It shows that introducing conditions linked to the topology of the real
closed field may present an obstacle to elementary equivalence. To under-
stand the situation better it is natural to consider simpler structures than
rings of continuous definable functions, but that still demand some topo-
logical information from the field. This is what we do in this paper, where
we consider the lattices of open definable sets. We show in particular, in
Corollary 2.16, that if R and S are elementarily equivalent o-minimal expan-
sions of real closed fields, then the lattices of open definable subsets of Rn

and of open definable subsets of Sn are L∞ω-elementarily equivalent in the
language of bounded lattices expanded by predicates for the dimension and
Euler characteristic. The proof is done by a back-and-forth argument.

It is worth noting that by [G, Corollary 1] and for n > 1, the lattice of
semi-algebraic open subsets of Rn (for R real closed field) is undecidable. In
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particular, there can be no description of the theory of such lattices in terms
of “simpler” structures that would be constructive enough to give decidability
results.

2 Boolean algebras of definable sets equipped

with predicates for dimension, Euler char-

acteristic and open sets

We follow the notation and definitions of [V], in particular we use the defini-
tion of complex that appears in this book. We work with o-minimal expan-
sions of real closed fields, i.e. with real closed fields that are o-minimal in a
fixed language containing Lof, the language of ordered fields.

Concerning the notation, we denote by N+ the set of positive integers,
by LBA = {∨,∧,¬,>,⊥} the language of boolean algebras, and by cl(A)
the topological closure of a set A. If ā = (a1, . . . , an) and ī = (i1, . . . , ik) ⊆
{1, . . . , n}, we denote by āī the tuple (ai1 , . . . , aik).

Finally, by definable we mean definable with parameters, unless otherwise
specified.

Definition 2.1. Let M be an ordered field and let n ∈ N+. Let K be a
complex in Mn.

1. We denote by V (K) the set of vertices of K. If S = (a0, . . . , ak) ∈ K
and ā = (a0, . . . , ak), we denote by (ā) the simplex S.

2. Let x0, . . . , x` ∈ Mn. We denote by AI(x0, . . . , x`) the formula in the
language of fields expressing the fact that the points of coordinates
x0, . . . , x` are affine independent.

3. Let ā = (a1, . . . , am) be an enumeration of the vertices of K and let
x̄ = (x1, . . . , xm) (where each xi is a tuple of n variables). We define
ΣK,ā(x̄), the type of K with respect to the enumeration ā, to be the
following set of Lof-sentences

{AI(x̄ī) | ī ⊆ {1, . . . ,m} ∧ (āī) ∈ K} ∪
{cl((x̄ī)) ∩ cl((x̄j̄)) = cl((x̄k̄)) | ī, j̄, k̄ ⊆ {1, . . . ,m}∧

(āī), (āj̄), (āk̄) ∈ K ∧ cl((āī)) ∩ cl((āj̄)) = cl((āk̄))} ∪
{cl((x̄ī)) ∩ cl((x̄j̄)) = ∅ | ī, j̄ ⊆ {1, . . . ,m} ∧ (āī), (āj̄) ∈ K∧

cl((āī)) ∩ cl((āj̄)) = ∅}.
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Lemma 2.2. Let M be an ordered field and let n ∈ N+. Let K be a complex
in Mn with ā = (a1, . . . , am), an enumeration of V (K). Let S be an ordered
field and let s̄ ⊆ S be such that S |= ΣK,ā(s̄). We define the following set of
simplices in Sn:

W := {(s̄ī) | ī ⊆ {1, . . . ,m} ∧ AI(x̄ī) ∈ ΣK,ā}.

Then W is a complex in Sn and ΣW,s̄ = ΣK,ā. We say that the complex W
is determined by ΣK,ā.

Proof. We follow the definition of complex given in [V, Definition 1.5, Chap-
ter 8]. It is clear that each (s̄ī) ∈ W is a simplex since by hypothesis s̄ī is
affine independent, and the other conditions in the definition of complex are
also satisfied since the definition of ΣK,ā mimics the definition of complex.
The fact that ΣW,s̄ = ΣK,ā follows from the definition of W .

Definition 2.3. Let M be an o-minimal expansion of a real closed field. A
homeomorphism of complexes is a triple (ξ,K,W ) such that

1. K and W are complexes in Mn for some n ∈ N+,

2. ξ : |K| → |W | is a homeomorphism,

3. ξ � V (K) is a bijection from V (K) to V (W ),

4. for every C = (a0, . . . , ak) ∈ K, ξ(C) is equal to (ξ(a0), . . . , ξ(ak)), has
dimension k, and belongs to W ,

5. the map ξ̃ : K → W , which sends a simplex C ∈ K to the simplex
ξ(C) ∈ W , is a bijection.

We say that two complexes K and W in Mn are homeomorphic as complexes
if there is a map ξ such that the triple (ξ,K,W ) is a homeomorphism of
complexes. We say that this homeomorphism of complexes is (M -)definable
if the map ξ is (M -)definable.

Proposition 2.4. Let M be an o-minimal expansion of a real closed field
and let n ∈ N+. Let K and W be complexes in Mn. Then K and W are
definably homeomorphic as complexes if and only if ΣK,ā = ΣW,b̄ for some
well-chosen enumerations ā and b̄ of the vertices of K and W .

Proof. “⇒” Let (ξ,K,W ) be a homeomorphism of complexes between K
and W (it does not need to be definable). Let ā = (a1, . . . , am) be an enu-
meration of V (K). Then ξ(ā) is an enumeration of V (W ). By hypothesis
(ai0 , . . . , aik) is a simplex in K if and only if (ξ(ai0), . . . , ξ(aik)) is a simplex
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in L, and using that ξ is a homeomorphism, it follows that ΣK,ā = ΣW,ξ(ā).
“⇐” Let ā = (a1, . . . , am) be an enumeration of V (K) and let b̄ = (b1, . . . , bm)
be an enumeration of V (W ) such that ΣK,ā = ΣW,b̄. For every tuple i0, . . . , ik ∈
{1, . . . ,m} we have (ai0 , . . . , aik) ∈ K if and only if (bi0 , . . . , bik) ∈ W .

Let C = (ai0 , . . . , aik) ∈ K. For k = 0 we define ξ(ai0 )((ai0)) = (bi0) and
for k ≥ 1 we define

ξC : C → (bi0 , . . . , bik)∑k
r=0 trair 7→

∑k
r=0 trbir

(all tr > 0,
∑k

r=0 tr = 1)

It is clear that ξC is a homeomorphism for every C ∈ K, and we define

ξ : |K| → |W |, ξ =
⋃
C∈K

ξC .

It is easy to check that ξ is continuous. For instance using [V, Lemma 4.2,
Chapter 6]: Let x belong to some C ∈ K and let γ : (0, 1)→ |K| be definable
continuous such that limt→0+ γ(t) = x. Since we are only interested in the
behaviour of γ at 0+, we can assume by o-minimality that there is a simplex
T ∈ K such that γ((0, 1)) ⊆ T . Say C = (ai0 , . . . , aik) and T = (aj0 , . . . , aj`)
with {i0, . . . , ik} ⊆ {j0, . . . , j`} (since C ⊆ cl(T )). By definition of ξ we
have ξ(C) = (bi0 , . . . , bik) and ξ(T ) = (bj0 , . . . , bj`). We then see easily that
limt→0+ ξ ◦ γ(t) = ξ(x).
Conversely, ξ−1 =

⋃
C∈K ξ

−1
C , and since ξ−1

C is defined in a similar way to ξC ,
we see that ξ−1 is also continuous, and so that ξ is a homeomorphism. The
other conditions in Definition 2.3 follow directly from the definition of ξ.

Observe that by construction of ξ we have ξ(ā) = b̄.

Definition 2.5. Let R ≺M be two ordered fields in some language L.

1. Let φ(x̄) be an L-formula. If C = φ(Rn) is a definable subset of Rn,
we denote by CM the subset φ(Mn) of Mn.

2. If K = {C1, . . . , C`} is a complex in Rn, we denote by KM the complex
{(C1)M , . . . , (C`)M} in Mn.

Definition 2.6. Let R and S be o-minimal expansions of real closed fields in
the same language L, and let M be an elementary extension of R and S. Let
n ∈ N+, let φ be a bounded definable subset of Rn, and let ψ be a bounded
definable subset of Sn.

We denote by I(φ, ψ) the set of all bijections f : A → B, where

1. A is a partition of φ into definable sets and B is a partition of ψ into
definable sets.
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2. there are

• two complexes K in Rn and W in Sn,

• a triangulation (F,K) of φ partitioning every element of A,

• a triangulation (G,W ) of ψ partitioning every element of B, and

• an M -definable homeomorphism of complexes (ξ,KM ,WM)

|KM |
ξ // |WM |

|K|

OO

|W |

OO

φ

F

OO

ψ

G

OO

such that f is the map induced by the above diagram, i.e. for every
A ∈ A such that F (A) = C1 ∪ · · · ∪ C` and ξ((Ci)M) = (Ei)M with
Ci ∈ K, Ei ∈ W (for i = 1, . . . , `), we have

f(A) = G−1(E1 ∪ · · · ∪ E`).

Every partition A of φ generates a boolean subalgebra BA(A) of the
boolean algebra of subsets of φ, whose atoms are precisely the elements of
A. So if f ∈ I(φ, ψ), f induces an LBA-isomorphism

BA(f) : BA(A) → BA(B)
A1 ∪· · · · ∪· Ar 7→ f(A1)∪· · · · ∪· f(Ar)

(where A1, . . . , Ar ∈ A)

We denote by IBA(φ, ψ) the set of all BA(f) : BA(A) → BA(B), for
f ∈ I(φ, ψ).

Definition 2.7. We define the languages Ln and L̃n by

Ln := LBA ∪ {Dk | k = 0, . . . , n} ∪ {Ek | k ∈ ω} ∪ {Open},

L̃n := {∨,∧,>,⊥} ∪ {Dk | k = 0, . . . , n} ∪ {Ek | k ∈ ω},

where the Dk’s, Ek’s and Open are new unary predicates.
In a structure whose elements are definable subsets of Rn, where R is an o-
minimal expansion of a real closed field, the new predicates will be interpreted
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as follows

Dk(A)⇔ dimA = k

Ek(A)⇔ E(A) = k

(where E denotes the Euler characteristic)

Open(A)⇔ A is open in Rn.

Lemma 2.8. With notation as in Definition 2.6, let f ∈ I(φ, ψ). Then
BA(f) is an Ln-isomorphism from

(BA(A);∨,∧,¬,>,⊥, (Dk)
n
k=0, (Ek)k∈ω,Open)

to

(BA(B);∨,∧,¬,>,⊥, (Dk)
n
k=0, (Ek)k∈ω,Open).

Proof. Since BA(f) is an LBA-isomorphism, we only have to show that BA(f)
is a ({Dk | k = 0, . . . , n} ∪ {Ek | k ∈ ω} ∪ {Open})-isomorphism. Let
A ∈ BA(A). Then F (A) = C1 ∪ · · · ∪ C` for some C1, . . . , C` ∈ K, and
if E1, . . . , E` ∈ W are such that ξ((Ci)M) = (Ei)M for i = 1, . . . , `, then
f(A) = G−1(E1 ∪· · · · ∪· E`). The result for the predicates Dk and Open then
follows from

dimA = dimF (A) = max{dimCi | i = 1, . . . , `}
= max{dimEi | i = 1, . . . , `}
= dim f(A)

and

A open⇔ C1 ∪ · · · ∪ C` open

⇔ ξ((C1)M) ∪ · · · ∪ ξ((C`)M) open

⇔ (E1)M ∪ · · · ∪ (E`)M open

⇔ E1 ∪ · · · ∪ E` open

⇔ f(A) open.

For the Euler characteristic, we first observe that E(Ci) = E(Ei) for i =
1, . . . , ` (indeed, if Ci is a simplex of dimension k, then Ei is also a simplex
of dimension k and E(Ci) = (−1)k = E(Ei)). Since F and G are definable
bijections, by [V, Proposition 2.4, Chapter 4], to prove that E(A) = E(f(A))
we only have to check that E(C1 ∪ · · ·C`) = E(E1 ∪ · · · ∪ E`). Since these
unions are disjoint unions, this statement is equivalent to

∑`
i=1E(Ci) =∑`

i=1E(i) (see [V, 2.9, Chapter 4]), and the result is proved.
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Definition 2.9. If M is an o-minimal structure, n ∈ N+ and Ω is a definable
subset of Mn, we denote by

1. defM(Ω) the boolean algebra of subsets of Ω that are definable in M .

2. odefM(Ω) the lattice of open subsets of Ω that are definable in M .

We recall the following definition, which is a reformulation of [H, pp. 97-
98].

Definition 2.10. Let L be a first-order language and let M and N be L-
structures.

1. A partial L-isomorphism from M to N is an L-isomorphism between
an L-substructure of M and L-substructure of N .

2. A set I of partial L-isomorphisms from M to N is called a back-and-
forth system if for every f ∈ I:

(a) for every a ∈M there is g ∈ I such that a ∈ dom g and g extends
f ;

(b) for every b ∈ N there is g ∈ I such that b ∈ Im g and g extends f .

3. We say thatM and N are back-and-forth equivalent if there is a non-
empty set of partial L-isomorphisms fromM to N that is a back-and-
forth system.

Lemma 2.11. With the same notation as in Definition 2.6, assume that
I(φ, ψ) is non-empty. Then IBA(φ, ψ) is a back-and-forth system between
defR(φ) and defS(ψ).

Proof. Let f ∈ I(φ, ψ) and let U be a definable subset of φ such that U 6∈
dom(BA(f)) = BA(A). (The case of U being a definable subset of ψ, U 6∈
Im f , is similar.)

By the triangulation theorem [V, Theorem 2.9, Chapter 8] there is a
triangulation (F1, K1) of |K| partitioning F (U) and every element of K. By
definition of triangulation, the map F1 is definable in R, say for instance that
the graph of F1 is defined by the formula F1(r̄, v̄) where v̄ is a tuple of 2n
variables, r̄ ⊆ R, and F1(ū, v̄) is a formula without parameters.

In such a case, i.e. if a formula θ(c̄, v̄) defines the graph of a function
(where c̄ is a tuple of parameters), we will denote this function by fθ(c̄,v̄). So
for instance, in the situation described above we have F1 = fF1(r̄,v̄).

We fix an enumeration ā of the vertices of K and an enumeration ā′ of
the vertices of K1. Then ξ(ā) is an enumeration of the vertices of W and
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ΣK,ā = ΣW,ξ(ā). The following set of L-sentences describes how the simplices
of K1 are included in the image of the simplices of K by fF1(r̄,v̄)

ΣF1(x̄, ȳ) ={(yi1 , . . . , yit) ⊆ fF1(z̄,v̄)((xj1 , . . . , xj`)) |
AI(xj1 , . . . , xj`) ∈ ΣK,ā(x̄) ∧ AI(yi1 , . . . , yit) ∈ ΣK1,ā′(ȳ)∧
(a′i1 , . . . , a

′
it) ⊆ fF1(r̄,v̄)((aj1 , . . . , aj`))}

∪ {(yi1 , . . . , yit) ∩ fF1(z̄,v̄)((xj1 , . . . , xj`)) = ∅ |
AI(xj1 , . . . , xj`) ∈ ΣK,ā(x̄) ∧ AI(yi1 , . . . , yit) ∈ ΣK1,ā′(ȳ)∧
(a′i1 , . . . , a

′
it) ∩ fF1(r̄, v̄)((aj1 , . . . , aj`)) = ∅}.

We have

R |=∃x̄∃ȳ∃z̄ ΣK,ā(x̄) ∧ ΣK1,ā′(ȳ)∧
[F1(z̄, v̄) defines the graph of a triangulation from the

complex determined by ΣK,ā(x̄) to the complex

determined by ΣK1,ā′(ȳ), partitioning the simplices

in the complex determined by ΣK,ā(x̄)]∧
ΣF1(x̄, ȳ).

(The above sentence can be expressed as a first-order sentence in the language
L.)
Since R ≡ S and ΣK,ā = ΣW,ξ(ā), it follows that

S |=∃x̄∃ȳ∃z̄ ΣW,ξ(ā)(x̄) ∧ ΣK1,ā′(ȳ)∧
[F1(z̄, v̄) defines the graph of a triangulation from the

complex determined by ΣW,ξ(ā)(x̄) to the complex

determined by ΣK1,ā′(ȳ), partitioning the simplices

in the complex determined by ΣW,ξ(ā)(x̄)]∧
ΣF1(x̄, ȳ).

(1)

Let ᾱ, b̄ and s̄ ⊆ S be tuples realising the variables x̄, ȳ and z̄ respectively
in (1). Let W ′ be the complex in S determined by ᾱ (as in Lemma 2.2)
and let W1 be the complex in S determined by b̄. Since ΣK1,ā′ = ΣW1,b̄

and ΣW ′,α = ΣW,ξ(ā), by Proposition 2.4 there is an M -definable homeomor-
phism of complexes (σ, (K1)M , (W1)M) and an S-definable homeomorphism
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of complexes (ξ′,WM ,W
′
M), which yield the following (informal) diagram

(K1)M
σ // (W1)M

KM
ξ //

fF1(r̄,v̄)

OO

WM
ξ′ //W ′

M

fF1(s̄,v̄)

OO

φM

F

OO

ψM

G

OO
(2)

This diagram need not be commutative at the level of maps (i.e. there is
no reason why we should have σ ◦ fF1(r̄,v̄) = fF1(s̄,v̄) ◦ ξ′ ◦ ξ), but is actually
commutative at the level of boolean algebras generated by the complexes, as
proved in the following claim.

Claim 2.12. Let C ∈ K and E ∈ W ′ be such that ξ′ ◦ ξ(CM) = EM . Let
fF1(r̄,v̄)(CM) = (C ′1)M ∪ · · · ∪ (C ′r)M with C ′i ∈ K1 and σ((C ′i)M) = (E ′i)M for
E ′i ∈ W1 and i = 1, . . . , `.
Then fF1(s̄,v̄)(EM) = (E ′1)M ∪ · · · ∪ (E ′r)M .

Proof of Claim 2.12: Let C = (aj1 , . . . , aj`), i.e. E = (ξ′ ◦ ξ(aj1), . . . , ξ′ ◦
ξ(aj`)). If a′i1 , . . . , a

′
it , taken from the tuple ā′, are such that (a′i1 , . . . , a

′
it) ∈ K1

(i.e. (bi1 , . . . , bit) ∈ W1), we have

(a′i1 , . . . , a
′
it) ⊆ fF1(r̄,v̄)(C)⇔
⇔ (yi1 , . . . , yit) ⊆ fF1(z̄,v̄)((xj1 , . . . , xj`)) ∈ ΣF1(x̄, ȳ)

⇔ (bi1 , . . . , bit) ⊆ fF1(s̄,v̄)((αj1 , . . . , αj`))

⇔ σ((a′i1 , . . . , a
′
it)) ⊆ fF1(s̄,v̄)((ξ

′ ◦ ξ(aj1), . . . , ξ′ ◦ ξ(aj`)))
⇔ σ((a′i1 , . . . , a

′
it)M) ⊆ fF1(s̄,v̄)(EM)

which proves the statement. End of the proof of Claim 2.12.

We simply follow diagram (2) to find what set we associate to U in the back-
and-forth process:
Let C ′1, . . . , C

′
` be simplices in K1 such that (fF1(r̄,v̄) ◦ F )(UM) = (C ′1)M ∪

· · · ∪ (C ′`)M . Observe that for i = 1, . . . , `, each σ((C ′i)M) is a simplex in
(W1)M , i.e. is equal to (E ′i)M , for some E ′i ∈ W1. In particular the set E :=
(fF1(s̄,v̄))

−1(E ′1∪· · ·∪E ′`) is definable in S and if we define V := (ξ′◦G)−1(E),
then V is also definable in S. We define a map f ′ such that BA(f ′) extends
BA(f) and sends U to V .

Let A′ := (fF1(r̄,v̄) ◦ F )−1(K1) and B′ := (fF1(s̄,v̄) ◦ ξ′ ◦ G)−1(W1). Since
F1(r̄, v̄) partitions the simplices of K and F1(s̄, v̄)◦ξ′ partitions the simplices
of W , A′ is a refinement of A and B′ is a refinement of B. In particular A′ is a
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partition of φ, B′ is a partition of ψ, BA(A) ⊆ BA(A′) and BA(B) ⊆ BA(B′).
For each (fF1(r̄,v̄) ◦ F )−1(C ′) with C ′ ∈ K1, there is a unique E ′ ∈ W1 such
that σ(C ′M) = E ′M , and we define f ′ : A′ → B′ as follows:

f ′((fF1(r̄,v̄) ◦ F )−1(C ′)) := (fF1(s̄,v̄) ◦ ξ′ ◦G)−1(E ′).

It is clear that f ′ is a bijection from A′ to B′.

Claim 2.13. 1. U ∈ BA(A′);

2. BA(f ′) extends BA(f);

3. f ′ ∈ I(φ, ψ).

Proof of Claim 2.13:

1. This holds by definition of A′ and the triangulation (fF1(r̄,v̄), K1).

2. Let A ∈ A. Since F partitions every element of A we have F (AM) =
(C1)M∪· · ·∪(C`)M for some C1, . . . , C` ∈ K, and since fF1(r̄,v̄) partitions
the simplices in K, we have fF1(r̄,v̄)((Ci)M) = (C ′i,1)M ∪· · ·∪(C ′i,ri)M for
some C ′i,j ∈ K1. Let E1, . . . , E` ∈ W be such that ξ((Ci)M) = (Ei)M
for i = 1, . . . , `, and let E ′i,j ∈ W1 be such that σ((C ′i,j)M) = (E ′i,j)M
for i = 1, . . . , `, j = 1, . . . , ri.

Since (ξ′ ◦ ξ)((Ci)M) = ξ′((Ei)M), Claim 2.12 gives, for i = 1, . . . , `,

(fF1(s̄,v̄) ◦ ξ′)((Ei)M) = (E ′i,1)M ∪ · · · ∪ (E ′i,ri)M . (3)

By definition of BA(f) and BA(f ′):

BA(f)(AM) = G−1((E1)M ∪ · · · ∪ (E`)M),

BA(f ′)(AM) =
⋃̀
i=1

(fF1(s̄,v̄) ◦ ξ′ ◦G)−1((E ′i,1)M ∪ · · · ∪ (E ′i,ri)M)

= G−1[
⋃̀
i=1

(fF1(s̄,v̄) ◦ ξ′)−1((E ′i,1)M ∪ · · · ∪ (E ′i,ri)M)],

and the claim follows by (3).

3. To finish checking that f ′ ∈ I(φ, ψ), we have to verify the second item
in Definition 2.6. For this we consider the complexes K1 and W1, and
the maps fF1(r̄,v̄) ◦ F and fF1(s̄,v̄) ◦ ξ′ ◦ G. We know that (fF1(r̄,v̄) ◦
F,K1) is an R-definable triangulation, while (fF1(s̄,v̄) ◦ ξ′ ◦G,W1) is an
S-definable triangulation. Finally, (σ,K1M ,W1M) is an M -definable
homeomorphism of complexes, and the rest of Definition 2.6 is fulfilled
by definition of f ′.
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End of the proof of Claim 2.13.

Therefore IBA(φ, ψ) is a back-and-forth system.

Our main result now follows from Karp’s theorem, which we briefly recall
(see [H, Corollary 3.5.3]).

Theorem 2.14 (Karp). Let L be a first-order language and let M and N
be L-structures. Then M and N are back-and-forth equivalent if and only if
they are L∞ω-equivalent (i.e. satisfy the same L∞ω-formulas).

Theorem 2.15. Let R and S be elementarily equivalent o-minimal L0-struc-
tures that are expansions of real closed fields, and let φ, θ1, . . . , θk be L0-
formulas with n free variables such that θi(R

n) ⊆ φ(Rn) for i = 1, . . . , k.
Then the structures

(defR(φ(Rn));∨,∧,¬,>,⊥, (D`)
n
`=0, (E`)`∈ω,Open, θ1(Rn), . . . , θk(R

n))

and

(defS(φ(Sn));∨,∧,¬,>,⊥, (D`)
n
`=0, (E`)`∈ω,Open, θ1(Sn), . . . , θk(S

n))

are Ln∞ω-equivalent.

Proof. We first observe that Rn and (0, 1)R
n on the one hand, and Sn and

(0, 1)S
n on the other hand, are definably homeomorphic, using homeomor-

phisms that are defined by the same L0-formula without parameters in R
and S. Therefore, and up to applying these homeomorphisms, we can as-
sume that φ defines a bounded subset of Rn and Sn.

By Lemma 2.11 and Theorem 2.14, it suffices to show that the set I(φ(Rn), φ(Sn))
is non-empty and contains a map sending θi(R

n) to θi(S
n) for i = 1, . . . , k.

Let (F1, K) be a triangulation of φ(Rn) partitioning θ1(Rn), . . . , θk(R
n). Let

F1(ȳ, ū) be an L0-sentence such that F1(r̄, ū) defines the graph of F1 for some
r̄ ∈ R, and let ā be an enumeration of V (K). Then

R |=∃x̄∃z̄ ΣK,ā(x̄) ∧ F1(z̄, ū) defines the graph

of a triangulation from φ to the complex

determined by ΣK,ā(x̄), partitioning θ1, . . . , θk.

The above sentence can be expressed as a first-order L0-sentence Ω and since
R ≡ S, it follows that

S |= Ω. (4)

Let b̄, s̄ ⊆ S be realisations of the variables x̄ and z̄ in (4), let W be the
complex in Sn determined by ΣK,ā(b̄) and let G1 be the triangulation whose
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graph is defined by F1(s̄, ū). We have ΣK,ā(x̄) = ΣW,b̄(x̄). Let A = F−1
1 (K)

and B = G−1
1 (W ).

By Proposition 2.4, if M is any common elementary extension of R and
S, there is a homeomorphism of complexes (ξ,KM ,WM) such that for every
simplex (ai1 , . . . , ai`) of K, ξ((ai1 , . . . , ai`)M) = (bi1 , . . . , bi`)M . It follows that
the map

f : A → B
F−1

1 (C) 7→ G−1
1 (E)

(where C ∈ K and E is the unique element in W such that EM = ξ(CM)) is
in I(φ(Rn), φ(Sn)), with f(θi(R

n)) = θi(S
n) for i = 1, . . . , k and the result

follows.

Corollary 2.16. Let R and S be o-minimal L0-structures that are expansions
of real closed fields, and let A ⊆ R∩S be such that R and S are elementarily
equivalent as L0(A)-structures (where L0(A) is the language L0 expanded by
constants for the elements of A). Let φ be an L0(A)-formula with n free
variables. Then

1. the bounded lattices

(odefR(φ(Rn));∨,∧,>,⊥, (D`)
n
`=0, (E`)`∈ω, θ1(Rn), . . . , θk(R

n))

and

(odefS(φ(Sn));∨,∧,>,⊥, (D`)
n
`=0, (E`)`∈ω, θ1(Sn), . . . , θk(S

n))

are L̃n∞ω-equivalent, for every θ1(Rn), . . . , θk(R
n) open subsets of φ(Rn)

that are definable with parameters in A.

In particular, if R ≺ S then

2. (odefR(φ(Rn);∨,∧,>,⊥, (D`)
n
`=0, (E`)`∈ω) is an L̃n-elementary substruc-

ture of (odefS(φ(Sn));∨,∧,>,⊥, (D`)
n
`=0, (E`)`∈ω).

Proof. Statement 1 follows immediately from Theorem 2.15, while statement
2 is a clear consequence of the first one.

3 Link with semilinear sets

We refer to [V, Chapter 1] for the notion of semilinear set, and recall [V, 2.14,
Exercise 2, Chapter 8]: Let S1, . . . , Sk be semilinear subsets of a bounded
semilinear set S ⊆ Rn (where R is an ordered field). Then there is a complex
K in Rn such that |K| = S and each Si is a union of elements of K. For
the sake of terminology, it is convenient to reformulate this as a triangulation
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result: If S is a bounded semilinear subset of Rn and S1, . . . , Sk are semilinear
subsets of S, then there is a complex K in Rn such that (id : S → |K|, K) is
a triangulation of S partitioning S1, . . . , Sk.

We say that a triangulation (F,K) of some definable set is semilinear
if the homeomorphism F is semilinear. In this section, R denotes a fixed
o-minimal expansion of a real closed field.

Much credit for this section goes to Marcus Tressl, who provided both
the question and the reference to [B]. We recall Definition 1.3 and Theorem
1.4 from [B] (restated to follow our notational conventions).

Definition 3.1. Let K be a complex in Rn. A triangulation (f,K ′) of |K| is
a normal triangulation of the complex K if it satisfies the following conditions

1. (f,K ′) partitions every simplex in K,

2. K ′ is a subdivision of K and

3. for every T ∈ K ′ and S ∈ K, if T ⊆ S then T ⊆ f(S).

Observe that in such a case we have f(S) = S for every S ∈ K. Definition
1.3 in [B] asks that φ′(T ) ⊆ S whenever T ∈ K ′ and S ∈ K are such that
T ⊆ S (and where φ′ is the homeomorphism in the normal triangulation).
This is due to a different notation for triangulations: a triangulation (F,W )
of the set S would be denoted in [B] by (W,F−1), i.e. the homeomorphism
starts from the realisation of the complex.

Theorem 3.2 (Normal Triangulation Theorem). Let K be a complex in Rn

and let S1, . . . , S` be definable subsets of |K|. Then there exists a normal
triangulation of K partitioning S1, . . . , S`.

Definition 3.3. Let n ∈ N+ and let Ω be a semilinear subset of Rn. We
denote by

1. slR(Ω) the boolean algebra of semilinear subsets of Ω that are definable
with parameters from R.

2. oslR(Ω) the lattice of open semilinear subsets (for the order topology
on R) of Ω that are definable with parameters from R.

Methods similar to those of the previous section, together with Theorem
3.2, allow us to compare the structures defR(φ) and slR(φ), and well as
odefR(φ) and oslR(φ), when φ is a bounded semilinear subset of Rn.

Definition 3.4. Let n ∈ N+ and assume that φ is a bounded semilinear
subset of Rn. We denote by I(φ) the set of all bijections f : A → B such
that
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1. A is a partition of φ into definable sets, and B is a partition of φ into
semilinear sets.

2. There are

• a complex K in Rn,

• a triangulation (F,K) of φ partitioning every element of A, and

• a semilinear triangulation (G,K) of φ partitioning every element
of B

|K|

φ

F
??

φ

G
__

such that f is the map induced by the above diagram, i.e. for every
A ∈ A such that F (A) = C1 ∪ · · · ∪ C` with Ci ∈ K, (for i = 1, . . . , `),
we have

f(A) = G−1(C1 ∪ · · · ∪ C`).

As in Lemma 2.8, such a map f induces an Ln-isomorphism BA(f) from
BA(A) to BA(B), and, defining

IBA(φ) := {BA(f) | f ∈ I(φ)},

we have the following lemma.

Lemma 3.5. With the same notation and hypotheses as in Definition 3.4,
assume that I(φ) is non-empty. Then IBA(φ) is a back-and-forth system
between defR(φ) and slR(φ).

Proof. Let f ∈ I(φ). For this proof, we need to check both directions of the
back-and-forth.

• Let U ∈ slR(φ) be such that U 6∈ Im BA(f) = BA(B). As explained at
the beginning of this section, by [V, 2.14, Exercise 2, Chapter 8] there
is a semilinear triangulation (id,W ) of |K| partitioning the semilinear
set G(U) and every element of K, so we have the following maps.

|W |

|K|

id

OO

φ

F
>>

φ

G
``
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Let A′ := F−1(W ) and B′ := G−1(W ). The triangulations (F,W ) and
(G,W ) define a map f ′ : A′ → B′ by f ′(F−1(T )) := G−1(T ) for every
T ∈ W . By definition we have f ′ ∈ I(φ), and U ∈ Im BA(f ′). We
only have to check that BA(f ′) extends BA(f). Let A ∈ BA(A) and
write F (A) = C1∪· · ·∪Cs with C1, . . . , Cs ∈ K. By definition we have
BA(f)(A) = G−1(C1 ∪ · · · ∪ Cs). Furthermore, each Ci is of the form
Di,1 ∪ · · · ∪Di,`i for some Di,1, . . . , Di,`i ∈ W , and

BA(f ′)(A) = G−1(
s⋃
i=1

Di,1 ∪ · · · ∪Di,`i)

= G−1(
s⋃
i=1

Ci)

= BA(f)(A).

• Let U ∈ defR(φ) be such that U 6∈ dom BA(f) = BA(A). Applying
Theorem 3.2 we find a normal triangulation (H,K ′) of K partitioning
F (U). By definition of normal triangulation, K ′ is a subdivision of K
and therefore the identity map from |K| to |K ′| is a triangulation of
|K| partitioning every simplex in K. As observed after the definition
of normal triangulation, we have H(S) = S for every S ∈ K.

|K ′|

|K|

H

JJ

id

TT

φ

F
>>

φ

G
``

We define A′ := (H ◦ F )−1(K ′) and B′ := (id ◦ G)−1(K ′). The trian-
gulations (H ◦ F,K ′) and (id ◦ G,K ′) define a map f ′ : A′ → B′ by
f ′((H ◦ F )−1(T )) := (id ◦ G)−1(T ) for every T ∈ K ′. By definition
we have f ′ ∈ I(φ) and U ∈ dom BA(f ′). Observe that by construc-
tion H ◦ F (U) = S ′1 ∪ · · · ∪ S ′r for some S ′1, . . . , S

′
r ∈ K ′ and thus

(id ◦G)−1(H ◦ F (U)) is a semilinear subset of φ.

We only have to check that BA(f ′) extends BA(f). Let A ∈ BA(A)
and write F (A) = C1 ∪ · · · ∪ Cr with C1, . . . , Cr ∈ K. By definition of
f we have BA(f)(A) = G−1(C1 ∪ · · · ∪Cr). To compute BA(f ′)(A) we
write H(Ci) = C ′i,1 ∪ · · · ∪ C ′i,ri for some C ′i,1, . . . , C

′
i,ri
∈ K ′. It follows

that
C ′i,1 ∪ · · · ∪ C ′i,ri = H(Ci) = Ci (5)
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since H is a normal triangulation of K and Ci ∈ K. We have A =⋃r
i=1

⋃ri
j=1(H ◦ F )−1(C ′i,j) and thus

BA(f ′)(A) =
r⋃
i=1

ri⋃
j=1

(id ◦G)−1(C ′i,j)

=
r⋃
i=1

G−1(

ri⋃
j=1

C ′i,j)

=
r⋃
i=1

G−1(Ci) by (5)

= BA(f)(A).

The following two results follow, as in the previous section.

Theorem 3.6. Let φ be a bounded semilinear subset of Rn and let θ1, . . . , θr
be semilinear subsets of φ. Then the structures

(defR(φ);∨,∧,¬,>,⊥, (D`)
n
`=0, (E`)`∈ω,Open, θ1, . . . , θk)

and

(slR(φ);∨,∧,¬,>,⊥, (D`)
n
`=0, (E`)`∈ω,Open, θ1, . . . , θk)

are Ln∞ω-equivalent.

Corollary 3.7. Let φ be a bounded semilinear subset of Rn.

1. The bounded lattices

(odefR(φ);∨,∧,>,⊥, (D`)
n
`=0, (E`)`∈ω, θ1, . . . , θk)

and

(oslR(φ);∨,∧,>,⊥, (D`)
n
`=0, (E`)`∈ω, θ1, . . . , θk)

are L̃n∞ω-equivalent, for every θ1, . . . , θk open semilinear subsets of φ.

2. In particular (oslR(φ);∨,∧,>,⊥, (D`)
n
`=0, (E`)`∈ω) is an elementary L̃n-

substructure of (odefR(φ);∨,∧,>,⊥, (D`)
n
`=0, (E`)`∈ω).
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