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Two important results in quadratic form theory, Pfister’s local-global
principle and the isotropy theorem (see [5]), can be stated more generally
for spaces of orderings (an abstract version of real spectras of formally real
fields), for which they are expressed as local-global principles:

A property of quadratic forms (expressed as a so-called positive-primitive
formula) holds if and only if it holds locally (at every single ordering for Pfis-
ter’s local-global principle, at every finite subspace for the isotropy theorem).

In his paper [7], Marshall introduces a much broader local-global principle
that could be satisfied by spaces of orderings, and showed how several im-
portant questions about quadratic forms and real algebraic geometry would
follow from it. He asks, for a space of orderings (X,G) (the unexplained
terminology will be introduced later):

“Is it true that any positive-primitive formula Φ(ḡ) with
parameters ḡ in G which holds in every finite subspace
of (X,G) necessarily holds in (X,G)?”

(LG)

No counter-examples are known. In this paper we work in the theory of
reduced special groups (a first-order theory dual to that of spaces of order-
ings) and consider, for a given pp-formula Φ(ḡ) with parameters in G, the
following instance of the above question:

“Is it true that if Φ(ḡ) holds in every finite subspace
of (X,G) it necessarily holds in (X,G)?”

(LG(Φ, ḡ))

After the development of the necessary tools, we show that the property
“Φ(ḡ) is false in some finite subspace” is first-order axiomatizable, and is also
equivalent to the property “Φ(ḡ) is false in some finite subspace of bounded
cardinality”, the bound being a function of the number of free and bounded
variables in Φ(x̄), c.f. Theorem 2. The axiomatizability of the property
(LG(Φ, ḡ)) is then a consequence (c.f. Theorem 1).
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In section 3 we conclude with consequences and related results. We get a
bound on the cardinality of the subspaces appearing in the isotropy theorem
(the bound depending only on the dimension of the quadratic form. Note that
a sharper bound already exists in the special case of the isotropy theorem, see
[1] theorem 6.4 p. 114). We show that every profinite and every pseudo finite
reduced special group satisfies (LG). Moreover the class of reduced special
groups satisfying (LG(Φ, ḡ)) (for some interpretation of ḡ) is closed under
direct limits and the class of reduced special groups satisfying (LG) is closed
under saturated quotients (in other words the class of spaces of orderings
satisfying (LG) is closed under subspaces).

1 Preliminaries

We use the terminology of special groups and abstract spaces of orderings,
as described in [2] and [1, 6]. We briefly recall the most important notions.

If (X,G) is a space of orderings, G is a group of exponent 2 with distin-
guished element −1, and X is a closed subset of Hom(G, {−1, 1}) ⊆ {−1, 1}G

equipped with the topology induced by the product topology (of the trivial
topology on {−1, 1}), which separates the points of G. X satisfies other
properties, in particular σ(−1) = −1 for every σ ∈ X. X is then compact,
Hausdorff and totally disconnected.
The sets X(a1, . . . , an) = {σ ∈ X | σ(ai) = 1 i = 1, . . . , n} (for n ∈ N,
a1, . . . , an ∈ G) are clopen sets which form a basis for the topology on X.
A subspace Y of (X,G) is any intersection of sets of the form X(a1, . . . , an),
and if ∆ =

⋂
{kerσ | σ ∈ Y } we have Y = ∆⊥ ∩X := {σ ∈ X | ∆ ⊆ kerσ}.

The main example of space of orderings is the space of orderings of a
formally real field K, where G = K̇/

∑
K̇2 and X is the set of orderings on

K.

The language of special groups is LSG = {1,−1, .,≡}, while a special
group is an LSG-structure G where G is a group of exponent 2 satisfying
some axioms (expressible as first-order LSG-formulas), and ≡ is a binary
relation on G2.

The classical example of a special group is the special group of a field K,
where G = K̇/K̇2, and ≡ is interpreted as the isometry between diagonal
quadratic forms of dimension 2. The special group of any real closed field
contains exactly two elements 1 and −1 and is denoted by Z2.
A special group G is reduced if for every a ∈ G, 〈a, a〉 ≡ 〈1, 1〉 implies a = 1.

There is an isomorphism of categories between spaces of orderings and
reduced special groups (see [2], chapter 3), which can be described for the
objects as follows:
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• If (X,G) is a space of orderings, the binary relation on G2 defined by
〈a, b〉 ≡ 〈c, d〉 if and only if ∀σ ∈ XG σ(a) + σ(b) = σ(c) + σ(d) (sum
in Z), turns G into a reduced special group.

• If G is a reduced special group, then (XG, G) is a space of orderings,
with XG := {σ : G→ Z2 | σ morphism of special groups}.

Concerning subspaces, if Y is a subspace of XG, we define Y ⊥ = ∩σ∈Y kerσ
and GY = G/Y ⊥. Then (Y,GY ) is a space of orderings, and we denote by
GY the corresponding special group. The canonical projection πY : G→ GY

is a morphism of special groups.
Let (X,G) be a space of orderings with associated reduced special group

G. A quadratic form 〈a1, . . . , an〉 of dimension n over (X,G) (or over G) is
a n-tuple of elements of G.

Using as a definition the inductive description of isometry for fields, it is
possible to define an isometry ≡G between forms 〈a1, . . . , an〉, 〈b1, . . . , bn〉 of
dimension n over G, by a first-order LSG-formula with parameters a1, . . . , an,
b1, . . . , bn.
This isometry coincides with the one defined as follows (Pfister’s local- global
principle; see [2], proposition 3.7):

〈a1, . . . , an〉 ≡X 〈b1, . . . , bn〉 if and only if ∀σ ∈ XG

n∑
i=1

σ(ai) =
n∑

i=1

σ(bi) ∈ Z.

We conclude these preliminaries with some notations about (first-order)
LSG-formulas with parameters ḡ in some reduced special group G.

A term t(ḡ) with parameters ḡ is a product of 1,−1 and some elements
of ḡ. Atomic formulas are of the form t1(ḡ) = t2(ḡ) and 〈t1(ḡ), t2(ḡ)〉 ≡
〈t3(ḡ), t4(ḡ)〉, where t1(ḡ), t2(ḡ), t3(ḡ), t4(ḡ) are terms.
A positive-primitive (pp for short) formula Φ(ḡ) with parameters ḡ is of the
form ∃x̄ ϑ(ḡ, x̄), where ϑ(ḡ, x̄) is a finite conjunction of atomic formulas in
ḡ, x̄.
The isometry 〈a1, . . . , an〉 ≡G 〈b1, . . . , bn〉 is expressible by a pp-formula, as
is the property “〈a1, . . . , an〉 is isotropic”.
If (X,G) is a space of orderings with associated special group G, and if Φ(ḡ)
is a LSG-formula, the notation X |= Φ(ḡ) will stand for G |= Φ(ḡ). Similarly,
for a subspace Y of (X,G), Y |= Φ(ḡ) will stand for GY |= Φ(πY (ḡ)).

We will use the following direct consequence of Pfister’s local-global prin-
ciple: If (X,G) is a space of orderings and ϑ(ḡ) is a conjunction of atomic
formulas with parameters in G, then G |= ϑ(ḡ) if and only if for every σ ∈ X
Z2 |= ϑ(σ(ḡ)). This gives, for a subspace Y of (X,G): GY |= ϑ(πy(ḡ)) if and
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only if for every σ ∈ Y Z2 |= ϑ(σ(ḡ)).
We can apply this to a pp-formula Φ(ḡ) with parameters in G. If Φ(ḡ) is of
the form ∃x̄ ϑ(ḡ, x̄) as above, we get Y |= Φ(ḡ) if and only if there exists
b̄ ∈ G such that for every σ ∈ Y ZZ2 |= ϑ(σ(ḡ), σ(b̄)).
Remark that this last equivalent characterization of Y |= Φ(ḡ) also makes
sense if Y is not a subspace of X, but only a subset. We will thus use it as
the definition of Y |= Φ(ḡ) when Φ(ḡ) is a pp-formula and Y is a subset of
X.

2 Main results

2.1 Model-theoretic tools

Definition 1 Let L be a first-order language and M and N be L-structures.
Let Γ be a set of L-formulas. We say that:

1. A map f : M →M is a Γ-morphism if for every formula γ(x̄) ∈ Γ and
every m̄ ∈M :

M |= γ(m̄) ⇒ N |= γ(f(m̄)).

Remark that f is not necessarily an L-morphism.

2. Γ is called uniform if it satisfies the following two conditions:

(a) Whenever γ(x1, . . . , xn) ∈ Γ and y1, . . . , yn are variables in L then
γ(y1, . . . , yn) ∈ Γ.

(b) Γ is closed by conjunctions.

3. ∃Γ and ∀Γ will denote the set of existential closures of formulas of Γ,
and the set of universal closures of formulas of Γ, respectively.

The proof of the following theorem is a simple model theoretic observa-
tion, but the statement is the central idea of our model theoretic arguments.

Theorem 1 Let I be an index set. For each i ∈ I let Γi be a uniform set of
L-formulas and let Mi be an L-structure. Then the following are equivalent:

1.
⋃
i∈I

(∃Γi ∩ Th(Mi)) is consistent.

2. There are an L-structure N and Γi-morphisms fi : Mi −→ N .
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Proof. 2.⇒1. By 2., the L-structure N is a model of
⋃
i∈I

(∃Γi ∩ Th(Mi));

even without the assumption that the Γi are uniform.

1.⇒2. We may assume that Mi ∩ Mj = ∅ for all i 6= j. For i ∈ I let
Di := {γ(ā) | γ(x̄) ∈ Γi, ā ∈ M and M |= γ(ā)}. By Gödel, it is enough to
show that

Φ :=
⋃
j∈J

Dj

is a consistent set of L(
⋃
i∈I

Mi)-sentences for all finite J ⊆ I. Since the sets Γi

are uniform it is enough to show that Φ0 := {γj(a
1
j , . . . , a

kj

j ) | j ∈ J} is consis-

tent, where γj(x1, . . . , xkj
) ∈ Γj with mutually distinct variables x1, . . . , xkj

and ai
j ∈ Mj with Mj |= γj(a

1
j , . . . , a

kj

j )}. The set {∃x1 . . . xkj
γj | j ∈ J} is

consistent by 1. Let N be an L-structure together with elements {bij | j ∈
J, 1 ≤ i ≤ kj} such that that N |= γj(b

1
j , . . . , b

kj

j ). If we interpret the
constants ai

j as bij we have a model of Φ0. 2

Lemma 1 Let L be a first-order language and let K be a class of L-structures.
Then the following are equivalent, for an L-structure M :

1. M is a model of Th(K).

2. M is an elementary substructure of an ultraproduct of elements of K.

Proof. Let K0 be the class of all L-structures which can be elementary
embedded into an ultraproduct of elements of K. Obviously, Th(K0) =
Th(K). By the well known test for axiomatizability of structure classes ([3]
9.5.10), K0 is axiomatizable. Hence K0 = Mod(Th(K0)) = Mod(Th(K)) as
desired. 2

Proposition 1 Let T be an L-theory, let K be a class of models of T and let
Γ be a uniform set of L-formulas. Then for each model M of T the following
are equivalent:

1. M |= TΓ, where

TΓ := Th(K) ∩ {∀x1 . . . xn ¬γ(x1, . . . , xn) | γ(x1, . . . , xn) ∈ Γ}.

2. There is a Γ-morphism M −→ N , where N is an ultraproduct of ele-
ments of K.

In other words T ∪ TΓ axiomatizes the class of all T -models for which there
is a Γ-morphism into an ultraproduct of elements of K.
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Proof. 2.⇒ 1. Let γ(x1, . . . , xn) ∈ Γ such that ∀x1 . . . xn ¬γ ∈ Th(K) and
let f : M −→ N be a Γ-morphism, where N is an ultraproduct of elements
from K. Suppose M |= ¬∀x1 . . . xn ¬γ, thus ∃x1 . . . xn ∈ ∃MΓ. Hence there
is some b ∈ Nn with N |= γ(b), in contradiction to N |= Th(K).

1.⇒ 2. Conversely let T̃ = Th(K) (observe that T̃ contains T ). Let Γ1 := Γ
and M1 := M . Let Γ2 := T̃ and let M2 be a model of T̃ . Then ∃Γ2 = T̃ . If
Φ ∈ ∃Γ1 ∩Th(M1), then T̃ 6` ¬Φ by 1, so (∃Γ1 ∩Th(M1))∪∃Γ2 is consistent
and by 1 there are Γi-morphism Mi → N , where N is an L-structure. A Γ2-
morphismM2 → N is just a modelN of T̃ with an arbitrary map f : M2 → N
(there are no free variables in Γ2!).

Since N is a model of T = Th(K), it can be embedded into an ultraprod-
uct of elements of K by lemma 1. 2

Corollary 1 Let T be an L-theory and let Γ be a uniform set of L-formulas.
Fix n ∈ IN and suppose for each model M of T there is a given subset
PM ⊆Mn such that the following two properties hold.

1. For all ultraproducts M =
∏

i∈I Mi/U of models Mi of T we have∏
i∈I

PMi
/U ⊆ PM ;

2. If f : M → N is a Γ-morphism and M,N |= T , then f−1(PN) ⊆ PM .

Then there is a set {ψi(ȳ) | i ∈ I} of L-formulas in n free variables
ȳ = (y1, . . . , yn), where each ψi is of the form ∃x̄ γ(ȳ, x̄) with γ ∈ Γ such that
for all models M of T

PM =
⋂
i∈I

Mn \ ψi[M
n].

Proof. Let c̄ = (c1, . . . , cn) be n new constants. We work in the language
L(c̄). Let

Γ1 = {γ(x1, . . . , xk, c1, . . . , cn) | γ(x1, . . . , xk, y1, . . . , yn) ∈ Γ}.

Hence Γ1 is obtained from Γ by replacing some variables in Γ by some of the
new constants c1, . . . , cn (in particular, Γ1 contains Γ). Let K be the class of
all L(c̄)-structures (M, ā) such that M |= T and ā ∈ PM . By assumption 1,
K is closed under ultraproducts. By assumption 2, if f : (M, ā) → (N, b̄) is
a Γ1-morphism, (N, b̄) ∈ K and M |= T , then (M, ā) ∈ K. Hence if (M, ā)
is an L(c̄)-structure, such that M is a model of T , then (M, ā) ∈ K if and
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only if there is a Γ1-morphism (M, ā) into an ultraproduct of elements from
K. By 1, the class K is axiomatized by T together with the set

Th(K)∩ {∀x1 . . . xk ¬γ(x1, . . . , xk, c1, . . . , cn) | γ(x1, . . . , xk, y1, . . . , yn) ∈ Γ}.

Let {γi(x̄i, ȳ) | i ∈ I} be an enumeration of all γ(x1, . . . , xk, y1, . . . , yn) ∈ Γ
such that ∀x1 . . . xk ¬γ(x1, . . . , xk, c1, . . . , cn) ∈ Th(K). Then the ψi(ȳ) :=
∃x1 . . . xk γi(x1, . . . , xk, y1, . . . , yn) have the required properties. 2

So far we have the model theoretic facts we need in order to show our
main theorem 1. The results below are used in the section on applications.

First another consequence of 1.

Corollary 2 Let Γ be a uniform set of L-formulas and let f : M → N be a
map between L-structures. Then the following properties are equivalent:

1. For all γ(x̄, ȳ) ∈ Γ and all ā ∈M we have N |= ∃x̄ γ(x̄, f(ā)) ⇒M |=
∃x̄ γ(x̄, ā).

2. There is an elementary extension M ′ �M and a Γ-morphism µ : N →
M ′ such that µ ◦ f is the inclusion M →M ′.

Proof. 2.⇒ 1. Clear.
1. ⇒ 2. We apply 1 to the language L(M) which expands L and has con-
stants a for every a ∈ M . Let M1 be the L(M)-structure which expands
M and interprets a as a. Let M2 be the L(M)-structure which expands N
and interprets a as f(a). Let Γ1 := Th(M1) and let Γ2 := {γ(x̄, ā)|γ(x̄, ȳ) ∈
Γ, ā ∈M}. Then Γ1,Γ2 are uniform sets of L(M)-formulas and by assump-
tion on f , (∃Γ1 ∩ Th(M1)) ∪ (∃Γ2 ∩ Th(M2)) is consistent. By 1 there is
an L(M)-structure M0, a Γ1-morphism i : M1 → M0 and a Γ2-morphism
µ : M2 →M0. We may identify M1 with the image of i and we can take M ′

to be the underlying L-structure of M0. Since i is a Γ1-morphism, M ′ is an
elementary extension of M . Since µ is a Γ2-morphism, µ is a Γ-morphism
and µ ◦ f is the inclusion M →M ′. 2

The next definition comes from the classical notion in modules:

Definition 2 Let L be a first-order language.

1. A positive-primitive formula (pp for short) with parameters ā in some
L-structure is a formula of the form ∃x̄ ϑ(x̄, ā), where ϑ(x̄, ā) is a
conjunction of atomic formulas.
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2. If f : M → N is an morphism of L-structures, f is called pure if for
every pp-formula Φ(m̄) with parameters in M , N |= Φ(f(m̄)) implies
M |= Φ(m̄).

Remark: A pure L-morphism is a morphism that satisfies one of the equiv-
alent conditions of corollary 2 if Γ is the set of conjunctions of atomic L-
formulas.

Proposition 2 Let L be a first-order language and let C be a finite set of
constants from L. Let ξ : M → N be a pure morphism of L-structures, and
let F be a set of (not necessarily definable) functions from M to CM , where
CM is the set of interpretations in M of the elements of C.

Let L(F) be the language obtained from L by adding unary function sym-
bols f for every function f ∈ F .

Then we can expand N into an L(F)-structure such that ξ is a pure
L(F)-morphism. Moreover, if the induced morphism ξ � CM : CM → CN is
an L-isomorphism, then for every f ∈ F which is an L-morphism, we can
choose the interpretation fN in N such that fN is an L-morphism.

Proof. Let Γ be the set of conjunctions of atomic L-formulas, M1 be the
L(F)-structure obtained from M by adding the functions in F , and N1 be
any expansion of N which is an L(F)-structure.
Then f : M1 → N1 is a map satisfying the first property of corollary 2.
Hence there exist an L(F)-elementary extension M ′

1 of M1 and a Γ-morphism
(i.e. an L-morphism) µ : N1 → M ′

1 such that the following diagram is
commutative:

M1

?

ξ

-i
M ′

1,

N1

�
�

�
���

µ

where i denotes the elementary embedding of M1 in M ′
1.

We now change the interpretation in N of the elements of F . For f ∈ F
and n ∈ N we have fM ′

1 ◦ µ(n) = c
M ′

1
n , for some cn ∈ C (c

M ′
1

n denotes the

interpretation of cn in M ′
1). We then interpret f in N by fN(n) = cNn (the

interpretation of cn in N). This turns N into a new L(F)-structure, and ξ
and µ become L(F)-morphisms.

• For ξ: Let m ∈ M . Then fM(m) = cM for some c ∈ C, which gives

fM ′
(i(m)) = cM

′
and applying the definition of fN we get fN(ξ(m)) =

cN . So ξ(fM(m)) = fN(ξ(m)).
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• For µ: Let n ∈ N . Then fN(n) = cN , for some c ∈ C such that

fM ′ ◦ µ(n) = cM
′
. So µ(fN(n)) = µ(cN) = cM

′
.

Since i is an elementary L(F)-morphism, we get that ξ is a pure L(F)-
morphism.

We now check the last assertion of the proposition. Assume that ξ �
CM : CM → CN is an isomorphism. Since i induces an isomorphism of L-
structures from CM = CM1 to CM ′

1 , we can assume that M1,M
′
1 and N all

contain a copy of CM1 .
Let f ∈ F such that f is an L-morphism. Then fM ′

1 is an L-morphism.

Since we identify CM ′
1 and CN with CM1 , the above definition of fN becomes

fN(n) = fM ′
1 ◦ µ(n), and fN is an L-morphism since fM ′

1 and µ are. 2

2.2 Testing pp-formulas on subspaces of bounded car-
dinality

Lemma 2 Let G be a special group and let H be a group of exponent 2. Let
aδ ∈ G[H], where a ∈ G and δ ∈ H\{1}. Then there exists an automorphism
of special groups ξ : G[H] → G[H] such that ξ(aδ) ∈ H.

Proof. Let πH be the canonical projection from G[H] onto H and let H ′

be a subgroup of G[H] such that GH ′ = GH, H ′ ∩ G = {1}, aδ ∈ H ′ and
πH(h′) = 1 ⇔ h′ = 1 for every h′ ∈ H ′ (if {δ, h2, h3, . . .} is a basis of H, take
{aδ, h2, h3, . . .} as a basis of H ′). Let λ : H → H ′ be an automorphism of
groups such that λ(δ) = aδ. Define:

G[H]
ξ→ G[H].

gh 7→ gλ(h)

ξ is a morphism of groups and ξ(−1) = −1. We check that ξ respects the
isometry:
Let gh, g′h′ ∈ G[H] such that gh ∈ D〈1, g′h′〉. We have to consider three
cases:

• h′ = 1 and g = −1. Then ξ(g′h′) = −1.1, so D〈1, ξ(g′h′)〉 = G[H],
which gives ξ(gh) ∈ D〈1, ξ(g′h′)〉 = G[H].

• h′ = 1 and g′ 6= −1. Then D〈1, g′h′〉 = DG〈1, g′〉×{1} and the hypoth-
esis gives g ∈ DG〈1, g′〉 and h = 1. Since D〈1, ξ(g′h′)〉 = D〈1, g′.1〉 =
DG〈1, g〉 × {1} we have ξ(gh) ∈ D〈1, ξ(g′h′)〉.

• h′ 6= 1. Then D〈1, g′h′〉 = {1, g′h′}, so gh = 1 or gh = g′h′. In either
case we get ξ(gh) ∈ D〈1, ξ(g′h′)〉.
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Then ξ is a morphism of special groups.
We check in a similar way that ξ−1 is a morphism of special groups. 2

The following result, due to M. Marshall, can be found pp. 12-13 in [8]
which is yet unpublished. We include it here for completeness.

Lemma 3 (Marshall) Let Φ(z̄) be a pp-formula with at most m quantifiers,
and let h̄ ∈ ∆, where ∆ is a group of exponent 2 generated by h̄. Suppose
l(z̄) = n.
Then there exist pp-formulas Φδ̄(z̄) for δ̄ ∈ ∆n such that each Φδ̄(z̄) has at
most m quantifiers and for every reduced special group G and every ḡ ∈ G
we have:

G[∆] 6|= Φ(ḡh̄)
if and only if

for every δ̄ ∈ ∆, G 6|= Φδ̄(ḡ)).

Proof. Let πG, πH be the canonical projections fromG[∆] ontoG, ∆ respec-
tively. Say that Φ(z̄) has the form ∃x̄ ϑ(z̄, x̄), where ϑ(z̄, x̄) =

∧k
i=1 γi(z̄, x̄)

with γ1, . . . , γk atomic formulas.
For simplicity we can assume that all the γi are of the form ti(z̄, x̄) ∈
D〈1, si(z̄, x̄)〉, since an equality a = 1 is given by a ∈ D〈1, 1〉.
For δ̄ ∈ ∆n let:

Φ′(z̄, δ̄) = ∃ū ∈ G ϑ(z̄, ūδ̄) = ∃ū ∈ G
k∧

i=1

γi(z̄, ūδ̄).

We have for every reduced special group G and ḡ ∈ G:
G[∆] |= Φ(ḡh̄) if and only if there exists δ̄ ∈ ∆n such that G[∆] |= Φ′(ḡh̄, δ̄).
All we have to do is to find pp-formulas Φδ̄ such that for every reduced special
group G and every ḡ ∈ G, G[∆] |= Φ′(ḡh̄, δ̄) if and only if G |= Φδ̄(ḡ).
For this we consider an atomic formula γ(z̄, ūδ̄) = “t(z̄, ūδ̄) ∈ D〈1, s(z̄, ūδ̄)′′
from Φ′(z̄, δ̄), and we use the definition of representation for extensions. This
leads us to consider several cases according to the coordinates on ∆ of the
different terms (remark that for ū, z̄ ∈ G we have πH(t(z̄h̄, ūδ̄)) = t(h̄, δ̄) and
πH(s(z̄h̄, ūδ̄)) = s(h̄, δ̄)):

1. t(h̄, δ̄) = 1 = s(h̄, δ̄). In that case we have, for every reduced special
group G and every ḡ ∈ G:

t(ḡh̄, ūδ̄) ∈ D〈1, s(ḡh̄, ūδ̄)〉
⇔

πG(t(ḡh̄, ūδ̄)) ∈ D〈1, πG(s(ḡh̄, ūδ̄))〉
⇔

t(ḡ, ū) ∈ D〈1, s(ḡ, ū)〉

10



We define γδ̄(ḡ, ū) = “t(ḡ, ū) ∈ D〈1, s(ḡ, ū)〉”.

2. t(h̄, δ̄) = 1 6= s(h̄, δ̄). Then for every reduced special group G and every
ḡ ∈ G we have D〈1, s(ḡh̄, ūδ̄)〉 = {1, s(ḡh̄, ūδ̄)} so:

t(ḡh̄, ūδ̄) ∈ D〈1, s(ḡh̄, ūδ̄)〉
⇔

t(ḡh̄, ūδ̄) = 1
⇔

t(ḡ, ū) = 1,

and the last equivalence holds because πh(t(ḡh̄, ūδ̄)) = 1, so t(ḡh̄, ūδ̄) =
1 if and only if πG(t(ḡh̄, ūδ̄)) = 1, i.e. t(ḡ, ū) = 1.
We define γδ̄(ḡ, ū) = “t(ḡ, ū) = 1”.

3. t(h̄, δ̄) 6= 1 = s(h̄, δ̄). Then D〈1, s(ḡh̄, ūδ̄)〉 is either included in G (if
s(ḡh̄, ūδ̄) 6= −1) or equal to G[H] (if s(ḡh̄, ūδ̄) = −1). The first case is
impossible since πH(t(ḡh̄, δ̄)) = t(h̄, δ̄) 6= 1, so for every reduced special
group G and every ḡ ∈ G:

t(ḡh̄, ūδ̄) ∈ D〈1, s(ḡh̄, ūδ̄)〉
⇔

s(ḡh̄, ūδ̄) = −1
⇔

s(ḡ, ū) = −1.

We define γδ̄(ḡ, ū) = “s(ḡ, ū) = −1”.

4. t(h̄, δ̄), 1 and s(h̄, δ̄) are all different. This is impossible, and we define
γδ̄(ḡ, ū) = “1 = −1”.

We then define Φδ̄(ḡ) to be ∃ū
∧k

i=1 γiδ̄(ḡ, ū).
By construction of the γiδ̄ we have, for every reduced special group G and
every ḡ ∈ G, G[∆] |= Φ(ḡh̄) if and only if there exists δ̄ ∈ ∆ such that
G |= Φδ̄(ḡ). 2

Lemma 4 There is a natural number B(m,n) such that for every reduced
special group G and every pp-formula Φ(ḡ) with parameters ḡ ∈ Gn with at
most m quantifiers the following holds.

If Z is a finite subspace of XG with Z 6|= Φ(ḡ), then there is a subspace
Y of XG such that |Y | ≤ B(m,n) and Y 6|= Φ(ḡ).

11



Proof. We have Z 6|= Φ(ḡ), i.e. GZ 6|= Φ(ḡ). If we show that there is a
subspace Y of Z (so a subspace of XG) such that cardY ≤ B(m,n) such
that Y 6|= Φ(ḡ), then the result will be proved.

Since GZ is a finite reduced special group, it is built up from ZZ2 using
a finite number of times the operations of product and extension (see [5]
for the corresponding result for spaces of orderings), and we can proceed
by induction on the construction of GZ (we essentially follow the argument
pp. 12-13 in [8]).

We first define B(m,n) inductively by B(m, 0) = 1 for every m ∈ IN and
B(m,n) = 2n22mnB(m,n−1) if n ≥ 1. The induction on the construction of GZ

is:

• GZ = ZZ2. Since 1 and −1 are in the language, we can assume n = 0,
and we take for Y the whole space of orderings of GZ , which consists of
the identity from GZ onto itself. The required properties are satisfied.

• GZ = G1×G2 for G1, G2 reduced special groups. Since GZ 6|= Φ(ḡ) we
have for example G1 6|= Φ(π1(ḡ1)), where π1 is the canonical projection
from GZ onto G1. Then by induction we have a finite subspace Y of
XG1 such that |Y | ≤ B(m,n) and Y 6|= Φ(π1(ḡ)). But Y can also be
seen as a subspace of Z = XGZ

, which gives Y 6|= Φ(ḡ).

• GZ = G1[H]. We distinguish two cases:
The first one is when ḡ = {g1, . . . , gn} ⊆ G1. Then G1 6|= Φ(ḡ) and by
induction we have a subspace Y of XG1 such that |Y | ≤ B(m,n) such
that Y 6|= Φ(ḡ). Since Y can also be seen as a subspace of Z = XGZ

,
the result is proved in this case.

If {g1, . . . , gn} & G1, say if gn ∈ G1[H] \ G1. By lemma 2 there is an
automorphism of special groups ξ : GZ → GZ such that ξ(gn) ∈ H,
so we can assume that gn ∈ H. We write gi as aihi with ai ∈ G1

and hi ∈ H (so an = 1). Let ∆ be the subgroup of H generated by
{h1, . . . , hn}.
We have G1[∆] 6|= Φ(ḡ). Using 3, there are pp-formulas Φδ̄ with m
existential quantifiers, for δ̄ ∈ ∆m, such that for every reduced special
group K and every k̄ ∈ K:

K[∆] 6|= Φ(k̄h̄) if and only if ∀δ̄ ∈ ∆ K 6|= Φδ̄(k̄). (1)

We first apply this for K = G1 and k̄ = ā. Note that every formula
Φδ(ā) has n− 1 parameters since an = 1.
By induction we then have, for every δ̄ ∈ ∆, a subspace Yδ̄ of XG1 such
that |Yδ̄| ≤ B(m,n− 1) and Yδ̄ 6|= Φδ̄(ā).

12



Let Y0 be the subspace of XG1 generated by ∪δ̄∈∆mYδ̄. Then |Y0| ≤
22mnB(m,n−1) since | ∪δ̄∈∆ Yδ̄| ≤ 2mnB(m,n− 1).
We now take for Y the extension of Y0 by ∆. Then by (1), Y 6|= Φ(ḡ)
and |Y | ≤ |Y0|2n = B(m,n). 2

2.3 Satisfying a pp-formula on finite subspaces.

In this section we fix an n-tuple ȳ of variables and a pp-formula Φ(ȳ) with m
quantifiers. Hence Φ(ȳ) = ∃x1 . . . xm ϑ(ȳ, x̄), where ϑ(ȳ, x̄) is a conjunction
of atomic LSG-formulas.

Lemma 5 Let Φ(ȳ) be a pp-formula with m quantifiers and n free variables
in the language of special groups. Let G and H be reduced special groups, let
ḡ ∈ Gn and let ξ : G→ H be a morphism of special groups. If Z ⊆ XH is a
finite subset such that Z 6|= Φ(ξ(ḡ)), then there exists a subspace Y of XG of
cardinality at most B(m,n) such that Y 6|= Φ(ḡ).

Proof. Take W = {σ ◦ ξ | σ ∈ Z}. W is finite and W 6|= Φ(ḡ), so is
included in a finite subspace W ′ such that W ′ 6|= Φ(ḡ). The conclusion
follows by lemma 4. 2

We come to our main result.

Theorem 2 For every pp-formula Φ(ȳ) with m quantifiers and n free vari-
ables ȳ = (y1, . . . , yn) there is a set {Φi(ȳ) | i ∈ I} of pp-formulas such that
for every reduced special group G and every n-tuple ḡ ∈ Gn the following are
equivalent:

1. For all finite subspaces Y of XG we have Y |= Φ(ḡ).

2. For all subspaces Y of XG with cardY ≤ B(m,n) we have Y |= Φ(ḡ).
(the natural number B(m,n) is defined in Lemma 4)

3. There is some i ∈ I with G |= Φi(ḡ).

4. If f : G→ H is a morphism of special groups of G into an ultraproduct
H of finite reduced special groups, then H |= Φ(f(ḡ)).

5. Let H be (
∏

Y ∈J GY )/U , where J is the set of finite subspaces of X and
U is any ultrafilter containing all the sets {Y ∈ J | Y ⊇ Z} (Z ∈ J)
(here GY := G/Y ⊥ for Y ∈ J).

Then H |= Φ(f(ḡ)), where f : G→ H is the canonical morphism from
G into H.

13



Proof. For a reduced special group G let PG be the set of all ḡ ∈ Gn

such that there is a subspace Y of XG with |Y | ≤ B(m,n) and Y 6|= Φ(ḡ).
We show that G and PG fulfill the requirements of 1 for the set Γ of finite
conjunctions of atomic LSG-formulas. Condition 2 of 1 is fulfilled by 5. In
order to see condition 1 of 1, let U be an ultrafilter on some set J , let Gj

be a reduced special group and let ḡj ∈ PGj
for each j ∈ J . For each

j ∈ J let Yj ⊆ XGj
be of size at most B(m,n) such that Yj 6|= Φ(ḡj). Let

Yj = {σjα | α ≤ B(m,n)}. Then Z := {
∏
σjα/U | α ≤ B(mn, )} is of size

at most B(m,n) and Z 6|= Φ(
∏
ḡj/U). We then get a subspace Y with the

required properties by applying lemma 4.

We then take for the Φi the formulas given by 1. This gives in particular
that 2.⇔3. holds.

2.⇔1. is lemma 4. and 4.⇒5. is obvious.

5.⇒1. Suppose Y 6|= Φ(ḡ) for some finite subspace Y of XG. Let J be
the set of finite subspaces of XG. We denote by GY the finite reduced special
group corresponding to a finite subspace Y of XG (GY = G/Y ⊥).
For Z ∈ J let SZ = {Y ∈ J | Y ⊇ Z}. The sets SZ form a filter basis.
Let U be an ultrafilter containing the SZ , for Z ∈ J , and let f : G →
H := (

∏
Y ∈J GY )/U be the natural map induced by the quotients G→ GY .

Clearly f is a morphism of special groups.
It remains to show that H 6|= Φ(f(ḡ)). If Z is a finite subspace of XG

containing Y then Z 6|= Φ(ḡ). In particular, if A = {Z ∈ J | GZ 6|= Φ(ḡ
mod Z⊥)} then A ⊇ SY , so A ∈ U . This proves H 6|= Φ(f(ḡ)).

1.⇒4. Let f : G → H :=
∏

j∈J Gj/U be a morphism of special groups,
where all Gj are finite reduced special groups, such that H 6|= Φ(f(ḡ)). We
have to find a finite subspace Y of XG such that Y 6|= Φ(ḡ). Let f(ḡ) :=
(ḡj)/U . Then A := {j ∈ J | Gj 6|= Φj(ḡj)} ∈ U . By 4, for each j ∈ J
there is a subset Yj of XGj

of size at most B(m,n) with Yj 6|= Φ(ḡj). Let
Yj = {σjα | α ≤ B(m,n)}. Then Z := {

∏
σjα/U | α ≤ B(mn, )} is of size

at most B(m,n) and Z 6|= Φ(
∏
ḡj/U). We then get a subspace Y with the

required properties by applying lemma 4. 2

Remark: The equivalent conditions of the theorem imply that the prop-
erty “there is a finite subspace Y with Y 6|= Φ(x̄)” is axiomatized by the set
of formulas {¬Φi(x̄) | i ∈ I}.

3 Applications

Applying theorem 2 to (LG(Φ, ḡ)) gives us the following.
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Theorem 1 Let Φ(ȳ) be a pp-formula with m quantifiers in n free variables
ȳ = (y1, . . . , yn). Then there is a set {Φi(ȳ) | i ∈ I} of pp-formulas such that
for every reduced special group G and every n-tuple ḡ ∈ Gn the following are
equivalent:

1. Either G |= Φ(ḡ) or there is a finite subspace Y of XG such that Y 6|=
Φ(ḡ).

2. Either G |= Φ(ḡ) or there is a subspace Y of XG of size at most B(m,n)
such that Y 6|= Φ(ḡ).

3. For each i ∈ I, G |= Φi(ḡ) → Φ(ḡ).

4. There is a morphism f : G → H of special groups where H is an
ultraproduct of finite reduced special groups, such that G |= Φ(ḡ) if
H |= Φ(f(ḡ)).

5. Let H be (
∏

Y ∈J GY )/U , where J is the set of finite subspaces of X and
U is any ultrafilter containing all the sets {Y ∈ J | Y ⊇ Z} (Z ∈ J).

If H |= Φ(f(ḡ)), then G |= Φ(ḡ), where f : G → H is the canonical
morphism from G into H.

Proof. This is an immediate consequence of theorem 2. 2

Remark: The equivalence of 1. and 3. says that the property (LG(Φ, ḡ)) is
axiomatized by the set of formulas {Φi(ḡ) → Φ(ḡ) | i ∈ I}.

3.1 Pure morphisms of reduced special groups

We now consider how a positive answer to (LG) or to (LG(Φ, ḡ)) is preserved
under pure morphisms, and we start with a result showing that in presence
of pure morphisms of reduced special groups, it is always possible to extend
the language:

Corollary 3 Let G and H be reduced special groups such that G is an LSG-
substructure of H, and the inclusion of G in H is pure.
Then every σ ∈ XG can be extended to σH ∈ XH in such a way that the
inclusion from G into H becomes pure in the language LSG ∪ {σ}σ∈XG

.

Proof. We use proposition 2. Since G and H are reduced special groups,
the structures induced by G on {1G,−1G} and by H on {1H ,−1H} are both
isometric to ZZ2. So by proposition 2, with M = G, N = H, L = LSG and
F = XG we get the corollary. 2
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Proposition 3 Let G and H be reduced special groups such that G is an
LSG-substructure of H and such that the inclusion ξ : G → H is pure. Let
Φ(x̄) be a pp-formula. Then H satisfies (LG(Φ, ξ(ḡ)) if and only if G satisfies
(LG(Φ, ḡ)).

Proof. This is a consequence of condition 4. in 1. 2

Corollary 4 Let G be a reduced special group. Then G satisfies (LG) for
pp-formulas with only one parameter in G.

Proof. Let Φ(g) be a pp-formula with parameter g. Let K = {1, g,−g,−1},
equipped with the isometry induced by G. Then K is a special subgroup of
G.

Let σ1, σ2 ∈ XG be such that σ1(g) = −1 and σ2(−g) = −1, and let
∆ = ker(σ1) ∩ ker(σ2). ∆ is a saturated subgroup of G of index 4. Then
G/∆ is a reduced special group with 4 elements and is equal to G/∆ =
{1/∆, g/∆,−g/∆,−1/∆}. Since there is only one 4-elements reduced special
group up to isomorphism, we have an isomorphism:

K → G/∆
x 7−→ x/∆

.

This shows that the projection G → G/∆ is a retract of the inclusion of K
in G, which is then pure. Since K is finite, it satisfies (LG) and we can apply
proposition 3. 2

3.2 Pseudo finite special groups

Let F = {Fi | i ∈ κ} be the set of all finite special groups. For Fi ∈ F let
Th(Fi) be the first-order theory of Fi (without parameters) in the language
LSG.

Definition 3 A pseudo finite special group is a model of
⋂
i∈κ

Th(Fi).

Remark: Using lemma 1, we see that a reduced special group G is pseudo
finite if and only if it is an elementary substructure of an ultraproduct of
finite special groups.

Proposition 4 Let G be a reduced special group. Then G satisfies (LG) if
and only if G is a pure substructure of an ultraproduct of finite reduced special
groups.

In particular, pseudo finite reduced special groups satisfy (LG).

Proof. This is 1.⇔ 4.⇔ 5. in 1. 2
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3.3 Profinite special groups

Profinite reduced special groups are inverse limits of finite reduced special
groups and are dual to direct limits of finite spaces of orderings which have
been studied in [4]. The following result is an easy adaptation of the proof
of theorem 1.1 in [4].

Lemma 6 Let G = lim
←
Gi be the inverse limit of an inverse system of finite

reduced special groups {Gi}i∈I . Then the canonical inclusion lim
→
Gi →

∏
i∈I

Gi

is pure.

Proof. Let ḡ = (ḡi)i∈I ∈ G and Φ(ḡ) be a pp-formula such that
∏

i∈I Gi |=
Φ(ḡ). Assume that Φ(ḡ) is of the form ∃x̄ ϑ(ḡ, x̄) where ϑ is a conjunction of
atomic formulas. Then there exists ā ∈

∏
i∈I Gi such that

∏
i∈I Gi |= ϑ(ḡ, ā),

i.e. Gi |= ϑ(ḡi, āi) for every i ∈ I.
For i ≤ j ∈ I let Vij = {(ai) ∈

∏
i∈I Gi | πji(aj) = ai}. Vij is closed in∏

i∈I Gi (equipped with the product topology), and lim
←
Gi =

⋂
i≤j∈I

Vij.

For i ∈ I let ϑ(ḡi, Gi) = {x̄ ∈ Gi | Gi |= ϑ(ḡi, x̄)} and ϑ(ḡ,
∏

i∈I Gi) = {x̄ ∈∏
i∈I Gi |

∏
i∈I Gi |= ϑ(ḡ, x̄)}. ϑ(ḡi, Gi) is closed in Gi, so ϑ(ḡ,

∏
i∈I Gi) is

closed in
∏

i∈I Gi.
For i ≤ j ∈ I define b̄ ∈

∏
i∈I Gi by bk = ak if k 6= i and bi = πji(aj). We

have Gk |= ϑk(ḡk, b̄k) for every k ∈ I (it is clear for k 6= i, and for k = i
it follows from Gj |= ϑ(ḡj, āj) since πji is a morphism of special groups and
πji(aj) = ai). This shows that b̄ ∈ ϑ(ḡ,

∏
i∈I Gi) ∩ Vji. We check similarly

that if i1 ≤ j1, . . . , in ≤ jn ∈ I then ϑ(ḡ,
∏

i∈I Gi) ∩ Vj1i1 ∩ · · · ∩ Vjnin 6=
∅. By compactness we then have ϑ(ḡ,

∏
i∈I Gi)

⋂
i≤j∈I Vji 6= ∅, which shows

lim
←
Gi |= Φ(ḡ). 2

Corollary 5 Let G = lim
←
Gi be the inverse limit of an inverse system of

finite reduced special groups. Then G is pure in an ultraproduct of finite
reduced special groups. In particular G satisfies (LG).

Proof. For i ∈ I let Si = {j ∈ I |j ≤ i}. The sets Si form a filter basis,
and are then all included in some ultrafilter U .
Let:

ξ : lim
←
Gi →

∏
i∈I Gi/U .

(gi)i∈I 7→ (gi)i∈I/U

We show that ξ is pure, and the result will follow by proposition 3. Let Φ(ḡ)
be a pp-formula with parameters in G such that

∏
i∈I Gi/U |= Φ(ξ(ḡ)).
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Suppose there exists i ∈ I such that Gi 6|= Φ(ḡi). Let j ∈ Si, i.e. j ≥ i.
We have a morphism of special groups πji : Gj → Gi such that πji(gj) = gi.
This implies Gj 6|= Φ(ḡj) (otherwise we would get Gi |= Φ(ḡi) by applying
πji). Thus Gj 6|= Φ(ḡj) for every j ∈ Si, which gives

∏
i∈I Gi/U 6|= Φ(ξ(ḡ)), a

contradiction.
So Gi |= Φ(ḡi) for every i ∈ I, that is

∏
i∈I Gi |= Φ(ḡ)). By lemma 6 we get

lim
←
Gi |= Φ(ḡ). 2

Remark: It is also possible to get this result by considering (LG) as a kind of
compactness property: since a finite subset of XG generates a finite subspace
of XG, (LG) is true for G if and only if every positive-primitive formula Φ(ḡ)
with parameters in G which holds in every finite subset of XG holds in XG.
Let Φ(ḡ) be a pp-formula with parameters in G. Φ(ḡ) has the form ∃x̄ ϑ(ḡ, x̄),
where ϑ(ḡ, x̄) is a conjunction of atomic formulas.

The property (LG(Φ, ḡ)) is an implication. The hypothesis is that for ev-
ery finite subset Y of XG, there is some b̄ ∈ G such that ϑ(σ(ḡ), σ(b̄)) is true
in G for every σ ∈ Y . In other words, the set of formulas {ϑ(σ(ḡ), σ(x̄)) | σ ∈
XG} is finitely satisfied in G (this is a set of formulas in the language
LSG ∪ {σ}σ∈XG

). The conclusion of (LG) gives some b̄ in G such that
ϑ(σ(ḡ), σ(b̄)) is true in G for every σ ∈ XG. In other words, the set of
formulas {ϑ(σ(ḡ), σ(x̄)) | σ ∈ XG} has a solution in G.

It is easy to check that if G is a compact topological group in which ker(σ)
is closed for every σ ∈ XG, then the set of elements of Gn satisfying the
formulas ϑ(σ1(ḡ), σ1(x̄)), . . . , ϑ(σk(ḡ), σk(x̄)) is closed, and we then conclude
by compactness that the set of formulas {ϑ(σ(ḡ), σ(x̄)) | σ ∈ XG} has a
solution in G.

Since for a profinite reduced special group G the set of σ ∈ XG that
are continuous is dense in XG, a simple modification of the argument above
shows that G satisfies (LG).

Using corollary 5 together with proposition 3, we get that a reduced
special group G satisfies (LG) if G is pure in a profinite reduced special
group. Hence

Proposition 5 G satisfies (LG) if and only if G is pure (and also dense) in
a profinite reduced special group.

Proof. “⇒” The reduced special groups GY (for Y a finite subspace of
XG), together with the canonical projections GY → GZ (if Z ⊆ Y ), form
an inverse system. Its limit lim

←
GY is a profinite special group in which G is

pure (using that G satisfies (LG)) and dense.
“⇐” This is proposition 3. 2
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Corollary 6 If G is a pseudo finite reduced special group then G is pure
(and dense) in a a profinite reduced special group.

Proof. By propositions 4 and 5 since pseudo finite reduced special groups
satisfy (LG). 2

3.4 Further consequences

We start with an easy remark about the isotropy theorem, but which can be
applied to any other such result:
Since the LSG-formula expressing that a quadratic form p is isotropic is
positive-primitive, the simple fact that the isotropy theorem is true, together
with 1 gives a bound on the cardinality of the finite subspaces involved in the
isotropy theorem (since the number of free variables and quantifiers in the
formula “p is isotropic” only depends on the dimension of p). More precisely,
there exists a map K : IN → IN such that for every reduced special group G
and every anisotropic quadratic form f over G with dim f = n, there exists
a finite subspace Y of XG such that cardY ≤ K(n) and f is anisotropic over
Y . Note that the general nature of 1 does not give as sharp a bound as the
one already known for the isotropy theorem (see [1], theorem 6.4 p. 114).

Proposition 6 Let Φ(ḡ) be a pp-formula in the language LSG(ḡ) = LSG ∪
{ḡ}.

1. The class of reduced special groups satisfying (LG(Φ, ḡ)) is closed by
direct limits (the morphisms being LSG(ḡ)-morphisms).

2. If G is a reduced special group satisfying (LG) and ∆ is a saturated
subgroup of G, then the quotient G/∆ satisfies (LG) (in terms of spaces
of orderings: the class of spaces of orderings satisfying (LG) is closed
by subspaces).

Proof. Item 1. is a consequence of point 4. in 1.
2. We first consider the case ∆ = DG(p), where p = 〈〈a1, . . . , an〉〉 is a

Pfister form with coefficients ā ∈ G.
The formula x ∈ D(p) is a pp-formula, and for every atomic formula

a ∈ D〈1, b〉 we have G/∆ |= a/∆ ∈ D〈1, b/∆〉 if and only if G |= ∃x, y x, y ∈
Dp ∧ ax ∈ D〈1, by〉, which is a pp-formula. Replacing each atomic formula
in Φ by a pp-formula as above, we get a new pp-formula Φ′(ā, ḡ) such that
G/∆ |= Φ(ḡ/∆) if and only if G |= Φ′(ā, ḡ).

Assume now that for every finite subspace Y of XG(ā), Y |= Φ(ḡ/∆).
Let Z be a finite subspace of XG. Then Z(ā) is a finite subspace of XG(ā)
so Z(ā) |= Φ(ḡ/∆). This gives Z |= Φ′(ā, ḡ). Since this is the case for every
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finite subspace Z, we get XG |= Φ′(ā, ḡ) (recall that G satisfies (LG)), which
yields XG(ā) |= Φ(ḡ/∆).

We now consider the general case. We have

∆ = ∪{DG〈〈a1, . . . , an〉〉 | n ∈ IN, a1, . . . , an ∈ ∆}.

For ā, b̄ ∈ ∆ with ā ⊆ b̄ we have a canonical morphism of special groups
fā,b̄ : G/DG〈〈a1, . . . , an〉〉 → G/DG〈〈b1, . . . , bm〉〉. If we take the direct limit
of the system {Gā, fā,b̄ | ā, b̄ ∈ ∆} we get:

G/∆ = lim
→
{Gā, fā,b̄ | ā, b̄ ∈ ∆},

as reduced special groups.
But every Gā satisfies (LG), and the result then follows from the first part
of the proposition. 2

3.5 An equivalent formulation of (LG)

Lemma 7 Let Φ(ḡ) be a pp-formula with parameters in G, and suppose that
X 6|= Φ(ḡ) (i.e. G 6|= Φ(ḡ)). Then there exists a subspace X0 of XG, minimal
for inclusion, such that X0 6|= Φ(ḡ).

The proof is an application of Zorn’s lemma. See [7], proposition 2.2.

We first remark that (LG(Φ, ḡ)) is only interesting for an infinite special
group / space of orderings (otherwise the answer is obvious since XG is a
finite subspace of XG).

Proposition 7 Let Φ(x̄) be a pp-formula in the language LSG. The following
are equivalent.

1. (LG(Φ, ḡ)) is true for every infinite reduced special group G and every
interpretation of ḡ in G.

2. For every infinite reduced special group G and every interpretation of ḡ
in G, if Y |= Φ(ḡ) for every proper subspace Y of XG, then G |= Φ(ḡ).

Proof. 1.⇒2. Easy since a finite subspace of XG (which is infinite) is
necessarily proper.

2.⇐1. Let G be an infinite reduced special group, and let Φ(ḡ) be a pp-
formula with parameters in G such that Y |= Φ(ḡ) for every finite subspace
Y of XG.

Suppose G 6|= Φ(ḡ), i.e. with our notation, XG 6|= Φ(ḡ). Then by lemma
7, there exists a minimal subspace X0 of XG such that X0 6|= Φ(ḡ). X0 is not
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empty because every finite subspace of XG satisfies Φ(ḡ).
Then every proper subspace of X0 satisfies Φ(ḡ), which implies (by assump-
tion) that X0 |= Φ(ḡ), a contradiction. 2

This reformulation has some interest also because the first part “Y |= Φ(ḡ)
for every proper subspace Y of XG” can be expressed in a very natural way
by the following first-order formula:

∀a a 6= 1 → “Φ(ḡ) modulo D〈1, a〉”.

This is first-order because D〈1, a〉 is definable.
In particular, the class of special groups for which this modified version of
(LG(Φ, ḡ)) is true, is elementary. This result is in some ways weaker than 1
but gives a very explicit and natural axiomatization.
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