Problem sheet 9

1. (a) Recall that $(\mathbb{Z},+)$ is cyclic if there is $a \in \mathbb{Z}$ such that $\mathbb{Z}=\langle a\rangle$, and that $\langle a\rangle$ is the set of everything you can obtain out of a and $-a$ (recall that $-a$ is the inverse of a in the group $(\mathbb{Z},+)$) and using the group operation as many times as you want (with a and $-a$ appearing as many times as you want and in any order). We clearly see that in this case

$$
\langle a\rangle=\{n a \mid n \in \mathbb{Z}\}=a \mathbb{Z}
$$

In particular $\langle 1\rangle=\mathbb{Z}$, so $(\mathbb{Z},+)$ is cyclic.
Let a be a generator of $(\mathbb{Z},+)$, i.e., $\langle a\rangle=\mathbb{Z}$, i.e., $a \mathbb{Z}=\mathbb{Z}$. If this holds, then $1 \in a \mathbb{Z}$, so a divides 1 , so $a=1$ or $a=-1$. We already saw that 1 is a generator of \mathbb{Z}, and clearly $(-1) \mathbb{Z}=\mathbb{Z}$, so -1 is also a generator of \mathbb{Z}.
(b) Assume that ($\mathbb{R} \backslash\{0\}, \cdot)$ is cyclic. So $\mathbb{R}=\langle a\rangle$ for some $a>0$ (the case $a<0$ is very similar, just a bit longer to write). Since the operation is the product, we have $\langle a\rangle=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$. This set does not contain all the elements of \mathbb{R}. There are several ways to see this, I give two:
(1) If $a>1$, then all the elements of $\langle a\rangle$ that are greater than 1 are $\left\{a, a^{2}, a^{3}, \ldots\right\}$ and $a<a^{2}<a^{3} \cdots$. Therefore the elements of the interval $(1, a)$ are not in $\langle a\rangle$. Similarly, if $a<1$, then the elements of $\langle a\rangle$ that are greater than 1 are $a^{-1},\left(a^{-1}\right)^{2}, \ldots$ with $a^{-1}<\left(a^{-1}\right)^{2}<\cdots$, so the elements of the interval ($1, a^{-1}$) are not in $\langle a\rangle$.
(2) The element $a^{1 / 2}$ is not in H : If it were in H we would have $a^{1 / 2}=a^{n}$ for some $n \in \mathbb{Z}$, Taking the logarithm, we get $(1 / 2) \ln (a)=n \ln (a)$ so $1 / 2=n$, impossible.
(c) Every element of $\mathbb{Z} / n \mathbb{Z}$ is of the form k for some $k \in\{0, \ldots, n-1\}$, so $k=1+1+\cdots+1$ (k times). It shows that $\mathbb{Z} / n \mathbb{Z}=\langle 1\rangle$ (again: the operation is the sum).
(d) $(1)(\mathbb{Z} / 3 \mathbb{Z},+)$: We simply looks at the subgroup generated by all possible 3 elements.
$\langle 0\rangle=\{0\}$, so 0 is not a generator.
$\langle 1\rangle=\{1,2,0\}=\mathbb{Z} / 3 \mathbb{Z}$, so 1 is a generator.
$\langle 2\rangle=\{2,4=1,0\}$, so 2 is a generator.
(2) $(\mathbb{Z} / 6 \mathbb{Z},+)$: We simply looks at the subgroup generated by all possible 6 elements.
$\langle 0\rangle=\{0\}$, so 0 is not a generator.
$\langle 1\rangle=\{1,2,3,4,5,6=0\}=\mathbb{Z} / 6 \mathbb{Z}$, so 1 is a generator.
$\langle 2\rangle=\{2,4,0\}$, so 2 is not a generator.
$\langle 3\rangle=\{3,6=0\}$, so 3 is not a generator.
$\langle 4\rangle=\{4,8=2,0\}$, so 4 is not a generator.
$\langle 5\rangle=\{5,10=4,9=3,8=2,7=1,6=0\}$, so 5 is a generator.
2. We apply the criterion seen in class:
(1) $C_{G}(a)$ is a subset of G by definition, and is non-empty since it contains e.
(2) We show that $C_{G}(a)$ is closed under products: Let $x, y \in C_{G}(a)$, i.e. $x a=a x$ and
$y a=a y$. Then $x y a=x a y=a x y$, so $x y \in C_{G}(a)$.
(3) We show that $C_{G}(a)$ is closed under taking inverses: Let $x \in C_{G}(a)$, i.e. $x a=a x$. Then $a=x^{-1} a x$ and $a x^{-1}=x^{-1} a$, so $x^{-1} \in C_{G}(a)$.
3. Take for instance $\sigma=\left(\begin{array}{ll}1 & 3\end{array}\right)$. Then $H \sigma=\left\{\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$ and $\sigma H=\left\{\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}$. They are different since $\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) \neq\left(\begin{array}{ll}1 & 3\end{array}\right)(12)$.
4. Option 1: Directly from the definition of $a H$:
" \Rightarrow " We show $a H \subseteq H$ and $H \subseteq a H$ (so that they are equal):
Since $a \in H$ and H is a subgroup, we have $a x \in H$ for every $x \in H$, and thus $a H \subseteq H$.
Let $h \in H$. We want to show that $h=a x$ for some $x \in H$. Solving for x we get $x=a^{-1} h$, and $x \in H$ since both a and h are in H.
" \Leftarrow " Assume $a H=H$. Since $e \in H$, we have $a=a e \in a H=H$, so $a \in H$.
Option 2: Using the equivalence relation \sim_{H}. Recall that $b H$ is the equivalence class of b for this relation. Then

$$
a H=H \Leftrightarrow a H=e H \Leftrightarrow[a]=[e] \Leftrightarrow a \sim_{H} e \Leftrightarrow e^{-1} a \in H \Leftrightarrow a \in H .
$$

5. (a) Since $a \in H$ and H is a subgroup, we have $-a \in H$, and then all possible sums of a and $-a$ are in H, so $a \mathbb{Z} \subseteq H$.
(b) We have $r=n-a q$. We know that $n \in H$ and $-a q \in H$. Therefore $n+(-a q)=$ $r \in H$.
(c) If $r \neq 0$, then r is a positive element of H that is smaller that a. It contradicts the choice of a. Therefore $r=0$, so $n=a q \in a \mathbb{Z}$.
(d) The previous questions prove both $a \mathbb{Z} \subseteq H$ and $H \subseteq a \mathbb{Z}$.
