Problem sheet 8

1. We apply Proposition 5.10 from the notes in both cases. What does this proposition mean? It means that for H to be a subgroup, H be must be non-empty, and that when we compute products and inverses of elements of H, the result is always in H (we say that H is closed under products and inverses).

By product we mean what we obtain when using the group operation, even in cases where it is not a product (as in the first case below).

- (a) $n\mathbb{Z}$ is non-empty. If $nx, ny \in n\mathbb{Z}$ then $nx + ny = n(x + y) \in n\mathbb{Z}$ and the inverse of nx in the group $(\mathbb{Z}, +)$ is -nx = n(-x), which also belongs to $n\mathbb{Z}$. So $n\mathbb{Z}$ is a subgroup of $(\mathbb{Z}, +)$.
- (b) \mathbb{N} is obviously non-empty, and the sum of two elements of \mathbb{N} is again in \mathbb{N} . But, if $n \in \mathbb{N}$, the inverse of n (for the operation +) is -n, which is not in \mathbb{N} . So \mathbb{N} is not a subgroup of $(\mathbb{Z}, +)$.
- (c) $\{-1,1\}$ is non-empty. If $x, y \in \{-1,1\}$ then $xy \in \{-1,1\}$. If $x \in \{-1,1\}$ then $x^{-1}(=x) \in \{-1,1\}$. So $\{-1,1\}$ is a subgroup of $(\mathbb{R} \setminus \{0\}, \cdot)$.
- (d) $H \cap K$ is non-empty: It contains e because both H and K contain e.

If $x, y \in H \cap K$ then $xy \in H \cap K$: By hypothesis we have $x, y \in H$ and $x, y \in K$. Since H is a subgroup we get $xy \in H$. Similarly $xy \in K$. So $xy \in H \cap K$.

If $x \in H \cap K$ then $x^{-1} \in H \cap K$: By hypothesis we have $x \in H$ and $x \in K$. Since H is a subgroup we have $x^{-1} \in H$. Similarly $x^{-1} \in K$. So $x^{-1} \in H \cap K$.

2. (Solution with way too much detail, since it is the first time we do this kind of thing.)

The subgroup generated by $(1 \ 2)$ and $(3 \ 4)$ (denoted $\langle (1 \ 2), (3 \ 4) \rangle$), is by definition the set of all possible products of $(1 \ 2), (3 \ 4)$ and their inverses (in any order, and as many of them as we want). But $(1 \ 2)$ is the inverse of $(1 \ 2)$ and $(3 \ 4)$ is the inverse of $(3 \ 4)$. So $\langle (1 \ 2), (3 \ 4) \rangle$ is the set of all possible products of $(1 \ 2)$ and $(3 \ 4)$. An element of it will look like

$$(1 \ 2)^{r_1}(3 \ 4)^{s_1}(1 \ 2)^{r_2}(3 \ 4)^{s_2}\cdots(1 \ 2)^{r_n}(3 \ 4)^{s_n},$$

for some $n \in \mathbb{N}$ and $r_i, s_i \in \mathbb{N} \cup \{0\}$.

But (1 2) and (3 4) are disjoint cycles, so (1 2)(3 4) = (3 4)(1 2), so we can put all the powers of (1 2) first and all the powers of (3 4) second in the above expression, and we obtain

$$(1\ 2)^r (3\ 4)^s$$

for some $r, s \in \mathbb{N} \cup \{0\}$.

Finally both $(1 \ 2)$ and $(3 \ 4)$ have order 2, so any power of $(1 \ 2)$ is either id or $(1 \ 2)$ and any power of $(3 \ 4)$ is either id or $(3 \ 4)$. So we are left with 4 possibilities:

id (if r = s = 0), (1 2), (3 4), (1 2)(3 4).

So the subgroup of S_4 generated by (1 2) and (3 4) is

$$\{id, (1 2), (3 4), (1 2)(3 4)\}.$$

- 3. $(x^r)^s = x^{rs} = e$ by hypothesis. Since the order of x^r is the smallest k such that $(x^r)^k = e$, we still have to show that if $(x^r)^t \neq e$ for any $t \in \mathbb{N}, t < s$. Suppose it is not the case, i.e. there is $t \in \mathbb{N}, t < s$ such that $(x^r)^t = e$. Then $x^{rt} = e$. But rt < rs, which is not possible since the order of x is rs.
- 4. We use proposition 5.10 (it is almost always this when you have to check that something is a subgroup).

It is a non-empty subset of G (because H is non-empty). Let axa^{-1} , $aya^{-1} \in aHa^{-1}$ (so with $x, y \in H$). Then $axa^{-1}aya^{-1} = a(xy)a^{-1} \in aHa^{-1}$ since $xy \in H$ (because H is a subgroup, so the product of two elements of H is still in H), and $(axa^{-1})^{-1} = ax^{-1}a^{-1} \in aHa^{-1}$ since $x^{-1} \in H$ (again, because H is a subgroup, so the inverse of an element of H is in H).