Problem sheet 5

1. (a) The permutation is equal to $(12)(15)(14)(17)(26)(27)(24)$, which is odd.
(b) The permutation is equal to $(137)(26)=(17)(13)(26)$, which is odd.

You can observe that a cycle of odd length is even, and a cycle of even length is odd.
2. Let σ be an even permutation, so $\sigma=\tau_{1} \cdots \tau_{2 k}$ where $\tau_{1}, \ldots, \tau_{2 k}$ are transpositions different from the identity. We know that $\sigma^{-1}=$ $\tau_{2 k}^{-1} \cdots \tau_{1}^{-1}$, and that $\tau_{i}^{-1}=\tau_{i}$. Therefore $\sigma^{-1}=\tau_{2 k}^{-1} \cdots \tau_{1}^{-1}$ is even.
Let σ be an odd permutation and γ be an even permutation. Then $\sigma=$ $\tau_{1} \cdots \tau_{2 n+1}, \gamma=\pi_{1} \cdots \pi_{2 k}$, where the τ_{i} and π_{i} are transpositions. Then $\sigma \tau=\tau_{1} \cdots \tau_{2 n+1} \pi_{1} \cdots \pi_{2 k}$, and the number of transpositions appearing in this product is odd.
3. $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ is a cycle of odd length so is an even permutation (a cycle of odd length is always even, a cycle of even length is always odd, see the observation before Theorem 3.27). If we want σ to be a cycle of length $4, \sigma$ will be odd, and the left-hand side of the equation will be odd, so cannot be equal to τ if τ is even.
4. (a) Let S be the set of all UCD students and B the relation "having the same birthday", i.e. if x and y are students, $x B y$ means that x and y have the same birthday. Show that B is an equivalence relation on S.
Reflexive: x has always the same birthday as x, so $x B x$.
Symmetric: If $x B y$, i.e. x has the same birthday as y, then y has the same birthday as x, i.e. $y B x$.
Transitive: If $x B y$ and $y B z$, i.e. x has the same birthday as y and y has the same birthday as z, then x has the same birthday as z, i.e. $x B z$.
(b) Let $f: A \rightarrow B$ be a function. We define a relation R on A by

$$
x R y \Leftrightarrow f(x)=f(y) .
$$

Show that R is an equivalence relation on A.
The proof is the same as the previous one, just replace each occurence of " u has the same birthday as v " by $f(u)=f(v)$.
5. We define a relation on \mathbb{Z} by: $x R y$ if and only if x and y have a common divisor greater than 1 . Show that R is not an equivalence relation.

It is not reflexive: 1 is not in relation with 1 (since no divisor of 1 is greater than 1).
It is enough to show that it is not an equivalence relation, but we could also check that it is not transitive ($2 R 6$ and $6 R 3$, but $2 R 3$ is false). It is symmetric though.

