Problem sheet 4

- 1. (a) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 6 & 9 & 8 & 5 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 1 & 3 & 9 & 6 & 5 & 8 & 7 \end{pmatrix}$. (b) $(1 \ 2 \ 3 \ 5 \ 7)(2 \ 4 \ 7 \ 6) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 5 & 1 & 7 & 3 & 6 & 8 & 9 \end{pmatrix}$.
- 2. We know that the order of σ is 4 since it is a cycle of length 4. Therefore $\sigma^4 = \operatorname{id}, \sigma^5 = \sigma, \sigma^6 = \sigma^2, \ldots$ and in general, if n = 4q + r with $r \in \{0, 1, 2, 3\}$ then $\sigma^n = \sigma^r$ (since $\sigma^n = \sigma^{4q}\sigma^r = (\sigma^4)^q\sigma^r = \operatorname{id}\sigma^r = \sigma^r$). So we only have to compute σ^2 and σ^3 .

$$\sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix}, \ \sigma^3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 2 & 3 & 5 \end{pmatrix}.$$

- 3. (a) We simply do the integer division of m by k and obtain: m = qk + r, where q is the quotient and r is the remainder (so $0 \le r \le k-1$).
 - (b) $g^{kq} = (g^k)^q = e^q = e.$
 - (c) Since $g^m = e$, we have $g^{kq+r} = e$, i.e. $g^{kq}\sigma^r = e$. Since $g^{kq} = e$ by the previous question, we get $g^r = e$.
 - (d) What happens if r > 0? Since $r \le k 1$, we obtain that r is a positive integer smaller than k with the property that $g^r = e$. But by definition of the order of g, k is the smallest positive integer such that $g^k = e$, so r > 0 is not possible and we must have r = 0.
 - (e) From the previous question we obtain r = 0, so m = kq, in other words m is a multiple of k.
- 4. (a) $\sigma^N = (\sigma_1 \cdots \sigma_k)^N = \sigma_1^N \cdots \sigma_k^N$ (because the cycles $\sigma_1, \ldots, \sigma_k$ are disjoint, so we can change the order of the terms in their product, so we can put all the σ_1 together, all the σ_2 together, etc.). But by definition N is a multiple of the order of each σ_i : $N = k_i |\sigma_i|$ for some $k_i \in \mathbb{N}$. Therefore $\sigma_i^N = \sigma_i^{k_i |\sigma_i|} = (\sigma_i^{|\sigma_i|})^{k_i} = \mathrm{id}^{k_i} = \mathrm{id}$ for every *i*. Thus we obtain $\sigma^N = \mathrm{id} \mathrm{id} \cdots \mathrm{id} = \mathrm{id}$.
 - (b) This is the harder question. There are many ways to write an answer to it. The following is just one way to do it. Let A_i be the

set of elements that appear in the cycle notation of σ_i . By definition of cycle, σ_i only moves the elements of A_i and not the others. Also, since the cycles $\sigma_1, \ldots, \sigma_k$ are disjoint, the sets A_1, \ldots, A_k are disjoint (it is exactly the definition of disjoint cycles). In particular there are no elements in A_1 and in $A_2 \cup \cdots \cup A_k$ (we will use that below).

By definition of σ_1 and A_1 , we know that $\sigma_1^{r_1}$ only moves elements of A_1 . But $\sigma_2^{r_2} \cdots \sigma_k^{r_k}$ only moves elements that are in $A_2 \cup \cdots \cup A_k$. Since $\sigma_1^{r_1} = \sigma_2^{r_2} \cdots \sigma_k^{r_k}$ we get that $\sigma_1^{r_1}$ only moves elements that are in both A_1 and $A_2 \cup \cdots \cup A_k$. As observed above, there are no such elements, so $\sigma_1^{r_1}$ does not move any elements, so is the identity map.

(c) Since $\sigma^t = \operatorname{id} (\operatorname{and} \sigma_1, \ldots, \sigma_k \text{ are disjoint cycles})$ we have $\sigma_1^t \sigma_2^t \cdots \sigma_k^t = \operatorname{id}$. Therefore $\sigma_1^t = (\sigma_2^t \cdots \sigma_k^t)^{-1} = (\sigma_k^t)^{-1} \cdots (\sigma_2^t)^{-1} = \sigma_k^{-t} \cdots \sigma_2^{-t} = \sigma_2^{-t} \cdots \sigma_k^{-t}$ (the last equality uses that the cycles are disjoint and thus that we can reorder as we want the elements in the product). By the previous question we obtain $\sigma_1^t = \operatorname{id}$.

The same reasonning using $\sigma_2, \ldots, \sigma_k$ instead of σ_1 would give $\sigma_2^t = \mathrm{id}, \ldots, \sigma_k^t = \mathrm{id}.$

- (d) Since $\sigma_i^t = \text{id for every } i$ we know by exercise 4 that t is a multiple of t_i (since $t_i = |\sigma_i|$).
- (e) By the previous question, t is a multiple of t_1, \ldots, t_k , so is a multiple of $\operatorname{lcm}(t_1, \ldots, t_k) = N$. In particular $t \ge N$. But $\sigma^N = \operatorname{id}$ and by definition t is the smallest positive integer such that $\sigma^t = \operatorname{id}$. The only possibility is t = N. In other words:

$$|\sigma| = \operatorname{lcm}(|\sigma_1|, \ldots, |\sigma_k|).$$