Problem sheet 4

1. (a) $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 6 & 9 & 8 & 5\end{array}\right)^{-1}=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 1 & 3 & 9 & 6 & 5 & 8 & 7\end{array}\right)$.
(b) $(123457)(2476)=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 5 & 1 & 7 & 3 & 6 & 8 & 9\end{array}\right)$.
2. We know that the order of σ is 4 since it is a cycle of length 4 . Therefore $\sigma^{4}=$ id, $\sigma^{5}=\sigma, \sigma^{6}=\sigma^{2}, \ldots$ and in general, if $n=4 q+r$ with $r \in\{0,1,2,3\}$ then $\sigma^{n}=\sigma^{r}$ (since $\sigma^{n}=\sigma^{4 q} \sigma^{r}=\left(\sigma^{4}\right)^{q} \sigma^{r}=\operatorname{id} \sigma^{r}=\sigma^{r}$). So we only have to compute σ^{2} and σ^{3}.

$$
\sigma^{2}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 1 & 2 & 5
\end{array}\right), \sigma^{3}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 1 & 2 & 3 & 5
\end{array}\right)
$$

3. (a) We simply do the integer division of m by k and obtain: $m=q k+$ r, where q is the quotient and r is the remainder (so $0 \leq r \leq k-1$).
(b) $g^{k q}=\left(g^{k}\right)^{q}=e^{q}=e$.
(c) Since $g^{m}=e$, we have $g^{k q+r}=e$, i.e. $g^{k q} \sigma^{r}=e$. Since $g^{k q}=e$ by the previous question, we get $g^{r}=e$.
(d) What happens if $r>0$? Since $r \leq k-1$, we obtain that r is a positive integer smaller than k with the property that $g^{r}=e$. But by definition of the order of g, k is the smallest positive integer such that $g^{k}=e$, so $r>0$ is not possible and we must have $r=0$.
(e) From the previous question we obtain $r=0$, so $m=k q$, in other words m is a multiple of k.
4. (a) $\sigma^{N}=\left(\sigma_{1} \cdots \sigma_{k}\right)^{N}=\sigma_{1}^{N} \cdots \sigma_{k}^{N}$ (because the cycles $\sigma_{1}, \ldots, \sigma_{k}$ are disjoint, so we can change the order of the terms in their product, so we can put all the σ_{1} together, all the σ_{2} together, etc.). But by definition N is a multiple of the order of each $\sigma_{i}: N=k_{i}\left|\sigma_{i}\right|$ for some $k_{i} \in \mathbb{N}$. Therefore $\sigma_{i}^{N}=\sigma_{i}^{k_{i}\left|\sigma_{i}\right|}=\left(\sigma_{i}^{\left|\sigma_{i}\right|}\right)^{k_{i}}=\mathrm{id}^{k_{i}}=\mathrm{id}$ for every i. Thus we obtain $\sigma^{N}=\mathrm{idid} \cdots \mathrm{id}=\mathrm{id}$.
(b) This is the harder question. There are many ways to write an answer to it. The following is just one way to do it. Let A_{i} be the
set of elements that appear in the cycle notation of σ_{i}. By definition of cycle, σ_{i} only moves the elements of A_{i} and not the others. Also, since the cycles $\sigma_{1}, \ldots, \sigma_{k}$ are disjoint, the sets A_{1}, \ldots, A_{k} are disjoint (it is exactly the definition of disjoint cycles). In particular there are no elements in A_{1} and in $A_{2} \cup \cdots \cup A_{k}$ (we will use that below).
By definition of σ_{1} and A_{1}, we know that $\sigma_{1}^{r_{1}}$ only moves elements of A_{1}. But $\sigma_{2}^{r_{2}} \cdots \sigma_{k}^{r_{k}}$ only moves elements that are in $A_{2} \cup \cdots \cup A_{k}$. Since $\sigma_{1}^{r_{1}}=\sigma_{2}^{r_{2}} \cdots \sigma_{k}^{r_{k}}$ we get that $\sigma_{1}^{r_{1}}$ only moves elements that are in both A_{1} and $A_{2} \cup \cdots \cup A_{k}$. As observed above, there are no such elements, so $\sigma_{1}^{r_{1}}$ does not move any elements, so is the identity map.
(c) Since $\sigma^{t}=\operatorname{id}$ (and $\sigma_{1}, \ldots, \sigma_{k}$ are disjoint cycles) we have $\sigma_{1}^{t} \sigma_{2}^{t} \cdots \sigma_{k}^{t}=$ id. Therefore $\sigma_{1}^{t}=\left(\sigma_{2}^{t} \cdots \sigma_{k}^{t}\right)^{-1}=\left(\sigma_{k}^{t}\right)^{-1} \cdots\left(\sigma_{2}^{t}\right)^{-1}=\sigma_{k}^{-t} \cdots \sigma_{2}^{-t}=$ $\sigma_{2}^{-t} \cdots \sigma_{k}^{-t}$ (the last equality uses that the cycles are disjoint and thus that we can reorder as we want the elements in the product). By the previous question we obtain $\sigma_{1}^{t}=\mathrm{id}$.
The same reasonning using $\sigma_{2}, \ldots, \sigma_{k}$ instead of σ_{1} would give $\sigma_{2}^{t}=\mathrm{id}, \ldots, \sigma_{k}^{t}=\mathrm{id}$.
(d) Since $\sigma_{i}^{t}=\mathrm{id}$ for every i we know by exercise 4 that t is a multiple of t_{i} (since $\left.t_{i}=\left|\sigma_{i}\right|\right)$.
(e) By the previous question, t is a multiple of t_{1}, \ldots, t_{k}, so is a multiple of $\operatorname{lcm}\left(t_{1}, \ldots, t_{k}\right)=N$. In particular $t \geq N$. But $\sigma^{N}=\mathrm{id}$ and by definition t is the smallest positive integer such that $\sigma^{t}=\mathrm{id}$. The only possibility is $t=N$. In other words:

$$
|\sigma|=\operatorname{lcm}\left(\left|\sigma_{1}\right|, \ldots,\left|\sigma_{k}\right|\right)
$$

