Problem sheet 3

1. (a) There are at least 3 ways to proceed (they are actually more or less the same):
(i) We can multiply both sides by a^{-2} (for instance on the left):

$$
a^{-2} a^{2}=a^{-2} e, \quad a^{-2+2}=a^{-2}, \quad a^{0}=a^{-2}, \quad e=a^{-2} .
$$

(ii) Multiply twice by a^{-1} (for instance on the left):

$$
a^{-1} a^{2}=a^{-1} e, \quad a=a^{-1},
$$

and then

$$
a^{-1} a=a^{-1} a^{-1}, \quad e=a^{-2} .
$$

(iii) Take the inverse of both sides:

$$
\left(a^{2}\right)^{-1}=e^{-1}, \quad a^{-2}=e .
$$

(b) The proof is similar. The easiest to write are probably to multiply both sides by a^{-k} or to take the inverse of both sides.
(c) The order of a is the smallest integer k such that $a^{k}=e$. But $a^{t}=e$ exactly when $\left(a^{-1}\right)^{t}=e\left(\right.$ since $\left.\left(a^{-1}\right)^{t}=a^{-t}\right)$ by (b). So the smallest integer k such that $a^{k}=e$ is exactly the smallest integer k such that $\left(a^{-1}\right)^{k}=e$, i.e., the order of a is the same as the order of a^{-1}.
2. (a) $(\{-1,1\}, \cdot)$:
(1) Is the product of two elements of $\{-1,1\}$ again an element of $\{-1,1\}$?. Clearly yes.
(G1): Is the product associative? Since it is the usual product, yes (we know it is associative).
(G2): Is there an identity element, i.e., an element e such that $e \cdot a=a$ and $a \cdot e=a$ for every $a \in\{-1,1\}$? Yes, take $e=1$.
(G3): For every $a \in\{-1,1\}$ is there $b \in\{-1,1\}$ such that $a \cdot b=1$ (since $e=1$) and $b \cdot a=1$? Yes, if $a=1$ take $b=1$ and if $a=-1$ take $b=-1$.
So $(\{-1,1\}, \cdot)$ is a group.
(b) $(\mathbb{N} \cup\{0\},+)$:
(1) The sum of two elements of $N \cup\{0\}$ is again in $\mathbb{N} \cup\{0\}$.
(G1): The sum is associative (it is the usual sum).
(G2): The identity element if 0 .
(G3): This is where it does not work: Not every element has an inverse. The inverse of a would be an element b in $\mathbb{N} \cup\{0\}$ with the property that $a+b=0$. But 1 does not have an inverse in $\mathbb{N} \cup\{0\}$: If we want $1+b=0$ we must take $b=-1$, which is not in $\mathbb{N} \cup\{0\}$.
So $(\mathbb{N} \cup\{0\},+)$ is not a group.
3. There are 6 elements in S_{3}, so we just have to find the 6 different ways to list the numbers $1,2,3$ (to put on the second row of the permutation).
4. (a)

$$
\alpha \beta=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{array}\right), \beta \alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 4 & 1
\end{array}\right) .
$$

(b) $k=3$.
(c) Since $\alpha^{3}=\operatorname{Id}$, we have $\alpha^{2} \alpha=\alpha^{3}=\operatorname{Id}$ and $\alpha \alpha^{2}=\alpha^{3}=\mathrm{Id}$. Therefore (by definition of the inverse) $\alpha^{2}=\alpha^{-1}$.
(d) $\beta^{-1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right)$ (we saw how to do this in class).
5. (a) We know that S_{2} has $2!=2$ elements. They can we written in the form $\left(\begin{array}{ll}1 & 2 \\ a & b\end{array}\right)$ with $a, b \in\{1,2\}$, so they are $\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right)=\mathrm{Id}$ and $\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$. So if we want to check $\sigma \gamma=\gamma \sigma$ for all $\sigma, \gamma \in S_{2}$ we only have 4 possibilities to check: 2 choices for $\sigma, 2$ choices for γ. If $\sigma=$ Id or $\gamma=$ Id we have $\sigma \gamma=\gamma \sigma$ (since $\operatorname{Id} \circ f=f \circ \operatorname{Id}=f$ not matter what $f \in S_{n}$ is. You can do the computation if you prefer). The only remaining case is $\sigma=\gamma=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$, and then $\sigma \gamma=\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right)$ while $\gamma \sigma=\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right)$.
(b) It suffices to find two elements α and β in S_{n} such that $\alpha \beta \neq \beta \alpha$. There are many possibilities (but it needs to use that $n \geq 3$ since we know that the product of elements of S_{2} is commutative). The approach here is to try a few at random (you know that one choice
of α, β will work, since the exercise asked you to do this). For instance:

$$
\alpha=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n \\
2 & 3 & 1 & 4 & \cdots & n
\end{array}\right)
$$

$(\alpha(n)=n$ for $n \geq 4)$ and

$$
\beta=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n \\
1 & 3 & 2 & 4 & \cdots & n
\end{array}\right)
$$

$(\beta(n)=n$ for $n \geq 4)$. Computing their products we get

$$
\alpha \beta=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n \\
2 & 1 & 3 & 4 & \cdots & n
\end{array}\right)
$$

(with $\alpha \beta(n)=n$ for $n \geq 4$) and

$$
\beta \alpha=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n \\
3 & 2 & 1 & 4 & \cdots & n
\end{array}\right)
$$

. (with $\beta \alpha(n)=n$ for $n \geq 4)$ and We see that $\alpha \beta \neq \alpha \beta$.

