Problem sheet 2

1. (a) The multiplication table of $\mathbb{Z} / 3 \mathbb{Z}$ is:

$$
\begin{array}{c|c|c|c}
\cdot & 0 & 1 & 2 \\
\hline 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 1 & 2 \\
\hline 2 & 0 & 2 & 1
\end{array}
$$

We check the properties of group:

- The operation (here the product), when applied to two elements of $\mathbb{Z} / 3 \mathbb{Z} \backslash\{0\}$, returns an element of $\mathbb{Z} / 3 \mathbb{Z} \backslash\{0\}$. Why did we check this? Because in the definition of group, the operation has to take two elements of G and return an element of G.
- The product is associative: You can either argue that it is because it comes from the product in \mathbb{Z}, which is associative (it is actually the product in \mathbb{Z}, and then we compute the remainder on the result), or you can look at all possibilities (since $\mathbb{Z} / 3 \mathbb{Z} \backslash\{0\}$ has only 2 elements it is still doable by hand).
- There is an element $e \in \mathbb{Z} / 3 \mathbb{Z} \backslash\{0\}$ such that for every $a \in$ $\mathbb{Z} / 3 \mathbb{Z} \backslash\{0\}, e \cdot a=a \cdot e=a$. Looking at the part of the multiplication table that is about $\mathbb{Z} / 3 \mathbb{Z} \backslash\{0\}$, we see that we can take $e=1$.
- For every $a \in \mathbb{Z} / 3 \mathbb{Z} \backslash\{0\}$ there is $b \in \mathbb{Z} / 3 \mathbb{Z} \backslash\{0\}$ such that $a \cdot b=b \cdot a=e$. Since $e=1$, another look at the table tells us that we should take:
When $a=1, b=1$, and when $a=2, b=2$.
We have checked all the properties, so it is a group.
(b) It is not a group. Already the product of two elements of $\mathbb{Z} / 4 \mathbb{Z} \backslash$ $\{0\}$ is not in $\mathbb{Z} / 4 \mathbb{Z} \backslash\{0\}$, since $2 \cdot 2=0$.

2. We want to show that $\left(a^{-1}\right)^{2}$ is the inverse of a^{2}. To do this we compute both products $\left(a^{-1}\right)^{2} \cdot a^{2}$ and $a^{2} \cdot\left(a^{-1}\right)^{2}$ and check that we get e in both cases. We do the first one, the other is left to you:

$$
\left(a^{-1}\right)^{2} \cdot a^{2}=a^{-1} \underbrace{a^{-1} a}_{e} a=a^{-1} e a=a^{-1} a=e .
$$

3. (a) We first multiply both sides of the equality on the left by a^{-1}, and get:

$$
a^{-1} a x b=a^{-1} c, \text { so } x b=a^{-1} c \text { since } a^{-1} a=e .
$$

NOTE that it would be (in general) false to write $x b=c a^{-1}$, because we might not have $a^{-1} c=c a^{-1}$. The first operation, multiplying both sides on the left by a^{-1} preserves the equality because we do the same thing to both sides. To obtain $x b=c a^{-1}$ you would need to multiply the left hand side on the left by a^{-1} and the right hand side on the right by a^{-1}, which is not the same thing, so might not preserve the equality.
From $x b=a^{-1} c$ we multiply both sides on the right by b^{-1} and get

$$
x b b^{-1}=a^{-1} c b^{-1}, \text { so } x=a^{-1} c b^{-1}, \text { since } b b^{-1}=e
$$

(b) We want to put all the x on the right, using that $x y=y x^{2}$ (we will see examples of groups where similar properties hold, for wellchosen x and y):

$$
\begin{gathered}
x y x y=x y(x y)=x y y x^{2}=y x^{2} y x^{2}=y x x y x^{2}=y x(x y) x^{2} \\
=y x y x^{2} x^{2}=y(x y) x^{4}=y y x^{2} x^{4}=y^{2} x^{6} .
\end{gathered}
$$

4. $g^{m k}=\left(g^{k}\right)^{m}=e^{m}=e$.
