Problem sheet 10

1. (a) We saw in class that if a has order n, then $\langle a\rangle=\left\{e, a, \ldots, a^{n-1}\right\}$, so here $\langle\sigma\rangle=$ $\left\{\mathrm{id}, \sigma, \sigma^{2}\right\}$. I leave it to you to compute σ^{2}.
(b) The element (12) has order 2, and is contained in H which is a group (because it is a subgroup). We have seen that, in a group, the order of an element always divides the order of the group. So 2 divides $|H|$. Similarly, 3 divides $|H|$ since (12 3) has order 3 and belongs to H.
Therefore H has at least 6 elements. But it is included in S_{3} which has 6 elements. So $H=S_{3}$.
This provides a quick way to show that every element of S_{3} can be written as a product of powers of (12) and of (1 23).
2. (a) Assume $a^{n}=a^{m}$ for some $n \neq m$, say $m>n$. Then $a^{m-n}=e$ (multiply both sides by $\left.a^{-n}\right)$. So the order of a is finite, $|a|=t$, and thus

$$
G=\left\{a^{k} \mid k \in \mathbb{Z}\right\}=\left\{e, a, a^{2}, \ldots, a^{t-1}\right\}
$$

is not infinite. Contradiction.
(b) Let b be a generator of $G: G=\left\{b^{n} \mid n \in \mathbb{Z}\right\}$, and thus $a=b^{t}$ for some $t \in \mathbb{Z}$. Since $b \in G$, we have $b=a^{k}$ for some $k \in \mathbb{Z}$. So $a=b^{t}=a^{k t}$. We observed that if $n \neq m$ then $a^{n} \neq a^{m}$, so we can deduce from $a=a^{k t}$ that $k t=1$. Since $k, t \in \mathbb{Z}$ we must have $k=t=1$ or $k=t=-1$. So $b=a$ or $b=a^{-1}$.
3. (a) We prove both directions.

Assume that $x^{k}=e$. Then

$$
\left(y x y^{-1}\right)^{k}=y x y^{-1} y x y^{-1} \cdots y x y^{-1}
$$

All the $y^{-1} y$ inside cancel out and we have $\left(y x y^{-1}\right)^{k}=y x^{k} y^{-1}=y e y^{-1}=e$.
Assume that $\left(y x y^{-1}\right)^{k}=e$. As above, we have $\left(y x y^{-1}\right)^{k}=y x^{k} y^{-1}$, so $y x^{k} y^{-1}=e$. Multiplying both sides on the left by y^{-1} and on the right by y gives $x^{k}=e$.
(b) The order of an element a is the smallest positive integer k such that $a^{k}=e$. Therefore question (a) gives the result.
(c) We have $b a=b(a b) b^{-1}$ and the result follows from (b).
4. Computing that $A^{4}=I_{2}$ and $B^{6}=I_{2}$ is direct. We have $A B=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right),(A B)^{2}=$ $\left(\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right)$, and more generaly $(A B)^{n}=\left(\begin{array}{cc}1 & -n \\ 0 & 1\end{array}\right)$ (by induction -in such a simple case you can leave it at this; if you prefer, or if it is complicated, write down the induction step explicitly-)), which proves the result.

