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Chapter 0

Sets and functions

In this chapter we quickly recall some basic notions and notation about sets
and functions. It is there for reference only and is not part of the course: You
should have seen it in first year, you will not be asked anything about it, but
we will use the notation all the time.

The following resource:

http://www.ucd.ie/msc/mathematicsresources/settheory/

contains some very similar material, you might like it better.

0.1 Sets

For us, a set is simply be a collection of objects. These objects can be anything
and are called the elements of the set. (This is a very intuitive notion of set,
that will be sufficient for us. A precise study of the notion of set is beyond the
scope of this course and is rather non-trivial. If you feel so inclined you may try
to look up something called Russell’s paradox.)

There are two main notations used for defining sets. In the first one, a set
is given by listing all its elements, and in the second one the set is given by
describing its elements:

(1) Set given by listing its elements

This is done for instance as follows:

{1,−π, ⋆}, {1, 2, 3, 4}, {the colour blue,−1, the planet Mars}.

The ellipsis (. . .) can be used to indicate that the list of elements goes
on “in the obvious way”, for instance:

{1, 2, 3, 4, . . .}

denotes the set of all positive integers (also denoted by N).

5

http://www.ucd.ie/msc/mathematicsresources/settheory/


6 CHAPTER 0. SETS AND FUNCTIONS

Set given by describing its elements

This is usually done by giving a property that characterizes the elements
of the set. For instance

{n | n is a positive integer, and 3 divides n}

denotes the set {3, 6, 9, 12, . . .} (and reads “the set of all n such that n
is a positive integer and 3 divides n”). . More generaly, this is done by
indicating a letter that will be used in the property, and then indicating
the property: The notation

{x | some property involving x}

means “the set of all elements (which we call x in the following property)
such that the given property is true for x”.

In this case, if we want to know if some object (any kind of object) is
in the set, we temporarilly call it x and check if the property is true for
this value of x. If it is, the element belongs to the set, if it is not, the
element does not belong to the set.

Example 0.1. 1. N = {1, 2, 3, . . .} the set of all positive integers.

2. Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .} the set of all integers.

3. Q = {a/b | a, b are integers, b ̸= 0}, the set of all rational numbers.

4. R denotes the set of all real numbers (it is more complicated to give a
precise description of it).

Some variations on the above notation are common and are usualy clear, for
instance

{x2 | x ∈ R and x > 3}
denotes the set of all squares of elements of R that are greater than 3 (it is equal
to (9,∞)).

Remark 0.2. An important feature of sets is that a set is completely determined
by the elements that it contains. In other words, if two sets contain the same
elements, they are equal:

{1, 2} = {1, 2, 2, 2} = {2, 1}, {1, 2, 3} ≠ {1, 2, 3, 4}.

As you can see, it means in particular that:

1. Repeating an element does not change the set;

2. The order in which the elements are listed does not matter.

Definition 0.3. The empty set is the set that does not contain any element.
Using the notation introduced above, it can be written {}, but the most common
notation for it is ∅ (an “O” with a diagonal bar).
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The notation a ∈ B means that B is a set, and that a is an element of B.
We write a ̸∈ B to denote that a is not an element of B. So, for instance:

3 ∈ N, −1 ̸∈ N, 4 ̸∈ {−10, ⋆, π}.

If S and T are both sets, the notation S ⊆ T (also written S ⊂ T ) means
that every element of S is also in T , and we say that S is contained in T , or
that S is a subset of T . Similarly, the notation S ̸⊆ T means that S is not
a subset of T , i.e. that there is at least one element of S that is not in T . For
instance

{1, 2} ⊆ {1, 2, 3}, {1, 2} ⊆ {1, 2}, N ⊆ Q,

but
{−1, 2} ̸⊆ N, Q ̸⊆ {1, 2, 3}.

Remark 0.4. Observe that if A is any set, then the empty set is a subset of
A. Why? Because if it were not the case, then there would be an element in the
empty set that is not in A (by definition of being a subset). But the empty set
does not contain any element, so it is not possible.

We say that S is a proper subset of T if S ⊆ T and S ̸= T (i.e. every
element of S is in T , and there is at least one element of T that is not in S).
This is denoted by S ⊊ T or S ⫋ T .

Finaly, if S is a finite set, we denote by |S| the number of elements in S. If
S is infinite, we write |S| = ∞. This number |S| is called the cardinality of
S.

0.2 Union and intersection

If S and T are two sets, we can build:

1. The union of S and T , denoted S ∪ T . It is the set that consists of all
the elements of S together with all the elements of T :

S ∪ T = {x | x ∈ S or x ∈ T}.

For instance
{−3, 4} ∪ N = {−3, 1, 2, 3, 4, 5, . . .},

{1, 2} ∪ {⋆,−6} = {1, 2, ⋆,−6}.

2. The intersection of S and T , denoted S ∩ T . It is the set that consists
of all the elements that are in both S and T :

S ∩ T = {x | x ∈ S and x ∈ T}.

For instance
{−3, 4} ∩ N = {4},

{1, 2} ∩ {⋆,−6} = ∅.
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0.3 Functions

Given two sets S and T , a function (also called a map) from S to T is “some-
thing” that associates an element of T to each element of S. If the function is
called f , we denote this by f : S → T , and the element from T associated to an
element a from S is denoted by f(a) (and is called the image of a by f).

This “something” can be anything that associates an element of T to each
element of S: A formula, a procedure explicitely described, or something com-
pletely arbitrary. A common compact notation for indicating how f is defined
is:

f : S → T, x 7→ “how to get f(x) out of x”,

see examples below.

Examples 0.5. 1. f : N → N given by f(n) = n+ 1. The compact notation
is f : N → N, n 7→ n+ 1.

2. g : R → R given by g(x) = sin(x) + x2 − 1. The compact notation is
g : R → R, x 7→ sin(x) + x2 − 1.

3. f : Z → N given by f(−1) = 3, f(12) = 1 and f(x) = |x| if x is different
from −1 and 12. The “compact” notation would be f : Z → N, −1 7→
3, 12 7→ 1, x 7→ |x| if x is not −1 or 12, but would be rather cumbersome
here.

4. φ : {−1, ⋆} → R given by φ(−1) = π and φ(⋆) = 0.

5. f : R → R, x 7→
√
x is not a map, because it is not defined for every

element of R (only for the non-negative ones), but f : [0,∞) → R, x 7→√
x is a map.

6. If S is a set, the map S → S, x 7→ x is called the identity map (on S)
and is denoted by IdS (or simply Id if the set S is clear from the context).

Definition 0.6. If f : S → T is a function, the set S is called the domain of
f and the set T its codomain. The set of all the images of elements of S is
called the image of f and is denoted by f(S):

f(S) = {f(x) | x ∈ S}.

Definition 0.7. Let f and g be two functions. We say that f and g are equal
(and write f = g) if:

1. They have the same domain and codomain;

2. They agree on each element of the domain, i.e. if the domain is S: f(x) =
g(x) for every x ∈ S.

Two properties of maps are particularly important:

Definition 0.8. Let f : S → T be a function.

1. We say that f is injective if for every x, y ∈ S with x ̸= y we have
f(x) ̸= f(y).
It is equivalent to saying that for all x, y ∈ S, if f(x) = f(y), then x = y.
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2. We say that f is surjective if every element of T can be obtained as f(x)
for some x ∈ S. In other words, if f(S) = T .

3. A function that is both injective and surjective is called bijective. We
also say that it is a bijection.

You may encounter the terminology “one to one” for injective and “onto”
for surjective, but we will avoid using it.

Example 0.9. 1. f : R → R, x 7→ x + 1 is injective, since f(x) = f(y)
implies x = y. It is also surjective, since every element of R is in the
image of f .

2. f : R → [0,∞), x 7→ x2 is not injective (since different elements of R can
have the same image) and is surjective. However, g : R → R, x 7→ x2 is
not surjective. Observe that the maps f and g are different (they do not
have the same codomain).

Lemma 0.10. Let f : S → T be an injective map. Then |S| = |f(S)|.

Proof. We first consider the case where S is finite, so S = {x1, . . . , xn} where
the xi are all different. By definition f(S) = {f(x1), . . . , f(xn)}, so |f(S)| ≤ n.
We now check that f(x1), . . . , f(xn) are all different: If it where not the case,
we would have f(xi) = f(xj) for some xi ̸= xj , but it is impossible since f is
injective. Therefore f(S) has n elements.

If S is infinite: Let T be a subset of S with n elements (where n ∈ N). Then
by the argument above f(T ) has n elements. But f(T ) ⊆ f(S), so f(S) has at
least n elements, for every n ∈ N, i.e. |f(S)| = ∞.

Corollary 0.11. Let f : S → T be a map where S and T are finite with the
same number of elements. Then f injective is equivalent to f surjective.

Proof. If f is injective: By the previous lemma we know that |f(S)| = |S|.
Since |S| = |T | we get |f(S)| = |T |. So f(S) ⊆ T and both have the same finite
number of elements, which shows that f(S) = T , i.e. that f is surjective.

If f is surjective. Write S = {x1, . . . , xn}, with the xi all different. Then
f(S) = {f(x1), . . . , f(xn)}. Since f(S) = T and |T | = |S| = n, we have
|f(S)| = n, so the f(xi) must be all different, i.e. f is injective.

Definition 0.12. Let f : S → T and g : T → W be maps. The composition
of f with g, denoted g ◦ f is the map

g ◦ f : S → W, x 7→ g(f(x)).

Definition 0.13. Let f : S → T . A map g : T → S is called the inverse of f
if f ◦ g = IdT and g ◦ f = IdS.
(In other words: f(g(x)) = x for every x ∈ T and g(f(y)) = y for every y ∈ S.)
The map g is denoted by f−1.

We say that f is invertible if it has an inverse.

Remark 0.14. In the previous definition, we called g the inverse of f . We can
do this because it is not very hard to check that if f is invertible, then it has
only one inverse: If both g and g′ are inverses of f , then we must have g = g′.
This is left as an exercise (use that g(f(y)) = y and that f is surjective).
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Proposition 0.15. 1. Let f and be a map. Then f has an inverse if and
only if f is bijective.

2. Let f : S → T and g : T → U be bijective maps. Then g ◦ f is bijective
and (g ◦ f)−1 = f−1 ◦ g−1



Chapter 1

Z/nZ, the integers modulo n,
aka clock arithmetic

1.1 The clock example

Imagine a standard clock with numbers from 1 to 12. Adding 3 hours to 11
o’clock gives 2 o’clock, so 11 + 3 = 2. Similarly, adding 30 hours to 2 o’clock
gives 8 o’clock, so 30 + 2 = 8. Again similarly: 17 = 5, 2− 5 = 9, etc.

What is happening here? We simply identify 12 with 0, which means that
all multiples of 12 “disappear”. In other words, if we look at a number, we
discard all multiples of 12, so that, for instance: 17 = 1 × 12 + 5, so 17 = 5.
Also: 2 − 5 = 9 because 2 − 5 = 12 + 2 − 5 = 9, −2 = 12 + (−2) = 10,
27 = 2× 12 + 3 = 3.

This could be done in exactly the same way if we had n numbers on the
clock (where n is any integer) instead of 12. We will do this next, except that
we will write:
− in the case of a normal clock: 0 instead of 12 (it is more convenient), so that
the numbers will be 0, 1, 2, . . . , 11
− in the case of a clock with n numbers: 0 instead of n, so that the numbers
will be 0, 1, . . . , n− 1.

1.2 Z/nZ

Recall the following:

Division of integers

Let m ∈ Z and n ∈ N. There are q ∈ Z and r ∈ {0, 1, . . . , n − 1} such
that

m = nq + r.

q is called the quotient in the division of m by n, and r the remainder.
The element r is denoted m mod n (we read m modulo n).

11
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Example 1.1. Following the clock example above: 26 mod 12 = 2 (because
26 = 12 × 2 + 2. If we use a clock with numbers from 1 to 10: 26 mod 10 = 6
(26 = 10× 2 + 6).

What does it mean?

If we look at the previous example, it gives us that:

� 26 is the same as 2 on a 12-hour clock, because the difference
between them is a multiple of 12.

� 26 is the same as 6 on a 10-hour clock, because the difference
between them is a multiple of 10.

So: If we divide m by n, the remainder r tells us that m will be the same
as r on a clock with n numbers.

The notation “mod n” is also used to indicate that two integers have the
same remainder in the division by n:
If a, b ∈ Z, we say that a and b are equal modulo n, and write a = b mod n, if
a and b have the same remainder modulo n (in other words: they are the same
on a clock with n numbers). For instance:

26 = 2 mod 12, 26 = 6 mod 10

1 = 3 mod 2, 7 = 11 mod 4.

Definition 1.2. For n ∈ N, we denote by Z/nZ the set of all remainders in the
division of integers by n, so:

Z/nZ = {0, 1, . . . , n− 1}.

We also define a sum +n and a product ·n of elements of Z with value in
Z/nZ as follows:

� a+n b = (a+ b) mod n,

i.e. compute the usual sum a+ b then take the remainder in the division
by n.

� a ·n b = (a · b) mod n,

i.e. compute the usual product a ·b then take the remainder in the division
by n.

This is exactly what would happen on a clock with numbers from
0 to n− 1.

Examples 1.3. This sum and product can be used to compute sum and product
of elements of Z/nZ and get results in Z/nZ again (we will come back to this
later):



1.2. Z/NZ 13

1. Take n = 4. Then Z/4Z = {0, 1, 2, 3}. The table of the operation +4 is

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

and the table of the product is

·4 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

2. Take n = 5. Then Z/5Z = {0, 1, 2, 3, 4} and 3+ 4 = 2, 3 · 4 = 2, 4 · 4 = 1.

3. Take n = 8. Then Z/8Z = {0, 1, 2, 3, 4, 5, 6, 7} and 3 + 4 = 7, 3 · 4 = 4,
4 · 4 = 0.

We will often drop the index n and simply write + and · instead of +n and
·n when the context is clear enough.

We finish with some very important properties of the sum and product in
Z/nZ.

Proposition 1.4. Let a, b ∈ Z. Then the following equalities are true in Z/nZ:

a+n b = (a mod n) +n (b mod n) = (a mod n) +n b = a+n (b mod n),

a ·n b = (a mod n) ·n (b mod n) = (a mod n) ·n b = a ·n (b mod n).

What does it mean?

It means that at any stage in a computation modulo n, you can replace
any integer x by x mod n (recall that is is the remainder in the divi-
sion of x by n. It is usually a smaller number, so should simplify the
computation).

Proof. We only check a +n b = (a mod n) +n b, the others are similar. This
equality means that the integers a+b and (a mod n)+b have the same remainder
modulo n. Write a = xn+r and b = yn+s with x, y ∈ Z and r, s ∈ {0, 1, . . . , n−
1} the remainders of a, b modulo n.

Then a+b = (x+y)n+(r+s) and (a mod n)+b = r+yn+s = yn+(r+s).
We do the division of r+s by n and obtain r+s = kn+t with t ∈ {0, 1, . . . , n−1}
so

a+ b = (x+ y + k)n+ t, and (a mod n) + b = (y + k)n+ t,

so a+ b and (a mod n) + b have the same remainder modulo n.
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We now list of few rather obvious properties of sum and product modulo n.
We do this mostly for future reference.

Proposition 1.5. Let a, b, c ∈ Z/nZ (or in Z). The following equalities hold:

1. Properties involving only the sum:

a+n b = b+n a,

(a+n b) +n c = a+n (b+n c),

a+n 0 = a,

a+n (−a) = 0.

2. Properties involving only the product:

a ·n b = b ·n a,

(a ·n b) ·n c = a ·n (b ·n c),

a ·n 1 = a,

3. Multiplication distributes over addition:

a ·n (b+n c) = a ·n b+n a ·n c.

Proof. All properties are either trivial (for instance a +n 0 = a) or are easily
checked using Proposition 1.4. As an example we check (a +n b) +n c = a +n

(b+n c). By definition:

(a+n b) +n c = [(a+ b) mod n] + c mod n by definition of +n

= ((a+ b) + c) mod n by Proposition 1.4

= (a+ (b+ c)) mod n

= a+ [(b+ c) mod n] mod n by Proposition 1.4

= a+n (b+n c).

Example 1.6. � We compute (5 + 12) · 62 in Z/3Z:
5 = 2, 12 = 0, 62 = 2. So (5 + 12) · 62 = 2 · 2 = 4 = 1.

� We compute 5634 in Z/3Z:
56 = 2, so 5634 = 234. We look now at the powers of 2 in Z/3Z:

2, 22 = 4 = 1, 23 = 222 = 2, 24 = 232 = 2 · 2 = 1,

25 = 242 = 2, 26 = 252 = 4 = 1, · · ·

So we see that 2k = 1 whenever k is a multiple of 2. So 234 = 1 in Z/3Z,
i.e. 5634is a multiple of 3 plus 1. In other words, 5634 − 1 is a multiple of
3.

This approach to computations has many practical applications.
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Remark 1.7. (Important) In the second example, we replaced 56 by 2 (since
56 = 2 mod 3) but we did NOT replace 34 by 1 (despite the fact that 34 =
1 mod 3). It is because Proposition 1.4 tells us that we can replace numbers in
a product, but not in an exponent.

And replacing numbers in an exponent is usually wrong. Here, replacing 34
by 1 would give us a wrong result: 561 = 56 = 2 in Z/3Z, not the right result. . .

Be careful with this!
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Chapter 2

Groups, part 1

2.0 Some idea of the motivations

Let us first consider an example (from a long time ago):
Looking at different triangles with side lengths a, b, c, you notice that in

many cases, you get a2 + b2 = c2. Then you may not be satisfied anymore with
checking it for every new triangle, and you want to understand better when it
does happen. Thinking further, you could come up with the notion of right-
angled triangle and show in general that this relation is true for every such
triangle. In this way you don’t have to check it again, you only need to check if
you have a right angle.

Something similar happened in algebra sometime in the early 19th century.
People where working with sets that had one operation, and probably ended up
doing again and again very similar reasonings, to get very similar results.1 (I
did not check the history in detail.) When this happens, it is natural to wonder
if there is a common setup that would explain all these similar results, and allow
to prove them once and for all.

Eventually, a common setup that would cover all these different cases was
indeed devised: It is the notion of group. We say that we have a group if we
have a set together with an operation on this set that has some “nice enough”
properties (see Definition 2.2). These properties make it possible to prove a lot
of results once and for all (we will only need to check that what we have is a
group, and the results proved for groups wil be automatically true. So it will
apply to a lot of different situations).

2.1 Introduction to groups

Definition 2.1. Let S be a set. An operation on S is a map from S×S to S,
i.e. a map that takes as input two elements of S and returns an element of S.

Such a map is usually not written as a function, in the form f(a, b), but
rather in the form a ⋆ b (similar to how we usually write sum or product). Of
course, we may use other symbols than ⋆.

1This was all linked to the study of solutions of equations P (x) = 0 where P is a polynomial,
and the proof there is no general formula if the degree of P is at least 5.

17
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You already know plenty of examples: The sum or the product in Z, in Z/nZ,
in R, Mn(C), the composition of maps, etc. Anything that takes two elements
from a set and returns an element from the same set is an operation. (Strictly
speaking it should be called a binary operation, because it takes 2 entries, but
we will only look at these, so we drop the “binary”.)

Definition 2.2. A group is a set G together with an operation ⋆ on G that has
the following “nice” properties:

(G1) For every a, b, c ∈ G, a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c.

(We say that the operation ⋆ is associative.)

(G2) There is an element e ∈ G such that e ⋆ a = a and a ⋆ e = a for every
a ∈ G.

(We say that e is an identity element for the operation ⋆.)

(G3) For every a ∈ G there is b ∈ G such that a ⋆ b = e and b ⋆ a = e.

(Every element has an inverse for ⋆; b is called an inverse of a.)

Additionally, the group is called commutative (or abelian) if the following
property also holds:

(G4) For every a, b ∈ G, a ⋆ b = b ⋆ a.

We will denote such a group by (G, ⋆) (since it is given by both the set G and
the operation ⋆).

Definition 2.3. The order of a group (G, ⋆) is the number of elements in G.
It is an integer or ∞. We denote it by |G| or o(G).

When |G| is finite, we say that G is finite, and otherwise that G is infinite.

Examples 2.4. 1. (Z,+) is a group.

0 is an identify element of this group. Why is that?

We check property (G2) in Definition 2.2: For this we take G = Z, ⋆ = +
and e = 0 and see if the property holds, i.e., do we have

0 + a = a and a+ 0 = a for every a ∈ Z?

Obviously yes, so 0 is an identity element for the operation + on Z.
Similarly, it is easy to check property (G1), and also property (G3) (with
e = 0 since we found that e is an identity).

The group (Z,+) is abelian and infinite.

2. Similarly (R,+) is also a group. The element 0 is an identity element.
The group (R,+) is abelian and infinite.

3. (Z/nZ,+) is an abelian group: Properties G1, G2, G3 are true if you
replace G by Z/nZ and ⋆ by +. The element 0 is an identity element.
This group has order n.

4. (R \ {0}, ·) is a group: Properties G1, G2, G3 are true if you replace G
by R \ {0} and ⋆ by ·. The element 1 is an identity element. This group
is infinite and abelian.
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5. (R, ·) is not a group. How do we see it? It means that at least one of
properties (G1), (G2) or (G3) is false. Properties (G1) and (G2) are true
(same as in the previous case), and 1 is an identity element (it is also
the only identity element, because it is the only element e that will work
in property (G2)). We look now at property (G3): The problem is when
we take a = 0. Then you want a · b = 1 for a well-chosen b, which is not
possible since a · b = 0 · b = 0. So property (G3) does not hold.

6. We denote by GLn(R) the set of all invertible n× n matrices with coeffi-
cients in R. Then (GLn(R), ·) is a group with identity element the identity
matrix In of size n (again: properties G1, G2, G3 are true if you replace
G by GLn(R) and ⋆ by ·). It is infinite, but not abelian (if n ≥ 2): in
general AB ̸= BA for matrices.

We will see more examples of groups later.

Remark 2.5. 1. So, a group is simply a set together with an operation that
has a few nice properties. We do not know in general what set it is or what
the operation is, except that it has the properties listed in the definition.
So every time we will want to prove a result about groups, we will only be
able to use what the definition of groups gives us, and nothing more.

2. Why do this?

The properties that appear in the definition of group are rather common
in mathematics (we saw a few examples, and will see more) and even in
sciences in general2, and have many interesting consequences. Investigat-
ing what we can obtain using only the definition of group (and not what
G precisely is or what the operation is) will allow us to prove results that
will be true every time we have a group, so that we will not have to prove
them again and again for each different example.

3. Why this particular list of properties in the definition of group? Could we
have taken other properties?

These properties were chosen so that: They occur often, and there are
enough of them to be able to prove interesting results. But people who de-
fined groups could very well have chosen a different set of “nice” properties
for their definition (it would have given a different concept). In practice
we often add to this list of properties to look at more precise cases, for
instance we saw property (G4) that asks a little bit more.

That being said, this definition was well chosen, and it is possible to prove
quite a lot of results with this particular list of properties, so people stick
to it.

We will now spend a few minutes looking at some very basic properties of
groups, then will look at a few more examples (one of them for quite some time),
then will come back to groups in general.

2Some book titles from the UCD library: Group theory and quantum mechanics, Molecular
symmetry and group theory, Group theory and physics, Chemical applications of group theory,
Group theory for atoms, molecules and solids, Group theory in physics, Topics in group
theory and computation, Group theory for the physical properties of crystals, Group theory
and chemistry, Applied group theory for chemists, physicists and engineers, Readable group
theory for chemists.
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Notation 2.6. We will write a−1 for the inverse of a (the element called b
in definition 2.2). The terminology “the” inverse suggests that a has only one
inverse. We will actually check this in Lemma 2.7.

It is also usual to write · instead of ⋆ and call the operation “multiplication”,
or “product”. We then write a · b instead of a ⋆ b for a, b ∈ G. We can even go
further and replace · by the “empty notation”. We then write ab instead of a · b
and simply G instead of (G, ·).

Lemma 2.7. Let G be a group. The following properties hold:

1. The identity element is unique;

2. The inverse of any element a ∈ G is unique (i.e., a has only one inverse,
i.e., if a has 2 inverses then they are equal);

3. For every a ∈ G, (a−1)−1 = a;

4. For every a, b ∈ G, (ab)−1 = b−1a−1.

5. For every a1, . . . , an ∈ G, (a1a1 · · · an)−1 = a−1
n · · · a−1

2 a−1
1 .

Proof. 1. By Definition 2.2, an element e is called an identity element if

ae = ea = a for every a ∈ G. (2.1)

If we have another identity element f , then

af = fa = a for every a ∈ G. (2.2)

The trick is to look at ef and compute it in two ways: Once using that e
is an identity element, once using that f is an identity element.

If we use that e is an identity element, we get ef = f (take a = f in line
(2.1) above). If we use that f is an identity element we get ef = e (take
a = e in line (2.2) above).

Therefore e = f .

2. By Definition 2.2, an element b is the inverse of a if ab = ba = e. If c
is another inverse of a, then ac = ca = a. Computing bac we obtain:
bac = ec = c (using that ba = e and e is the identity), and bac = be = b
(using that ac = e and e is the identity). So c = b.

3. We want to show that the inverse of a−1 is equal to a. By Definition 2.2,
an element b is the inverse of a−1 if ba−1 = e and a−1b = e. So we just
have to check that the element a has these two properties:

aa−1 = 1 (it is because a−1 is the inverse of a),

a−1a = 1 (again, it is because a−1 is the inverse of a).

4. We want to show that the inverse of ab is b−1a−1. Going back to the defini-
tion of the inverse (Definition 2.2), we have to show that (ab)(b−1a−1) = e
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and (b−1a−1)(ab) = e:

(ab)(b−1a−1) = a(bb−1)a−1 by associativity

= aea−1 since b−1 is the inverse of b

= aa−1 since ae = a

= e since a−1 is the inverse of a.

The verification of (b−1a−1)(ab) = e is similar and is left as a very worth-
while exercise. Do it!

5. This one is left as an exercise. You can either apply result 4. above n− 1
times, or prove it directly using the same method as in 4.

Notation 2.8. Let G be a group and let a ∈ G. For k ∈ N we write ak for the
product a · a · · · a (k times), and a−k for a−1 · a−1 · · · a−1 (k times). It is an
easy exercise to check that (ak)−1 = a−k (just compute to products aka−k and
a−kak and check that both are equal to e, see the proof of Lemma 2.7).

We also define a0 = e.

It is easy, but rather tedious (there are several cases to consider) to check
that for every r, s ∈ Z and a ∈ G we have

aras = ar+s.

Note that it is obvious (by definition of ak) if r, s > 0.

Notation 2.9. It is sometimes natural to use the symbol + for the group oper-
ation (for instance in the case of (Z,+) or (Z/nZ,+)). In this case, the usual
notation is to denote e by 0, and the element a−1 by −a. Also, if k ∈ N, the ele-
ment a+a+ · · ·+a (k times) is denoted by ka and the element (−a)+ · · ·+(−a)
(k times) is denoted by (−k)a (and is equal to k(−a)).

Lemma 2.10. Let G be a group and let a, u, w ∈ G. The following properties
hold:

1. au = aw implies u = w (left cancellation),

2. ua = wa implies u = w (right cancellation).

Proof. We prove the first first statement and leave the second as an exercise.
The elements au and aw are equal, so they stay equal if we multiply both on the
left by a−1: a−1au = a−1aw. But a−1a = e, so eu = ew and thus u = w.

Remark 2.11. In general there is no “mixed” cancellation law:

au = wa ̸⇒ u = w,

because there is no reason why we should have au = ua (this would allow us to
prove this statement, using lemma 2.10), since in general our group G may not
be abelian. In case G is abelian, we do have such a cancellation law.
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2.2 The order of an element

Definition 2.12. Let G be a group and let a ∈ G. The order of a, denoted
o(a) (or |a|), is the least positive integer k such that ak = e. If no such integer
exists, then the order of a is defined to be infinite.

Lemma 2.13. Let G be a finite group, and let a ∈ G. Then o(a) is finite.

Proof. Consider the powers of a: a, a2, a3, . . .. They cannot be all different since
they all belong to G and G is finite. So there are i, j ∈ N such that ai = ai+j , in
other words: ai = aiaj . Therefore (ai)−1ai = (ai)−1aiaj , so e = eaj and thus
e = aj .

We will prove a much more precise result later: o(a) is always a divisor of
|G|.

Remark 2.14. You may find the document “Groups 1” on the following page
(from the maths support centre) useful to help you understand the notion of
group:

http: // www. ucd. ie/ msc/ mathematicsresources/ advancedalgebraandproofs/

http://www.ucd.ie/msc/mathematicsresources/advancedalgebraandproofs/


Chapter 3

Permutations

Definition 3.1. Let X be a set. A permutation of X is a bijection from X
to X. We denote by S(X) the set of all permutations of X.

Permutations have some very interesting properties, and are also regularly
used as a tool to describe more complicated objects in mathematics.

We will only consider the case where X is finite and has n elements, say
X = {x1, . . . , xn}. Furthermore:

To simplify notation, we will only consider the case X = {1, . . . , n}.
(for the more general case, simply replace 1 by x1, 2 by x2, and so on. . . in
what follows)

If f ∈ S(X), then f(1) = i1 (for some i1 ∈ {1, . . . , n}), f(2) = i2 (for some
i2), . . . , f(n) = in (for some in). So we could denote f by

f : X → X, 1 7→ i1, 2 7→ i2, . . . , n 7→ in.

This notation is a bit cumbersome, so we will use a more compact notation:

f =

1 2 . . . n

i1 i2 . . . in

 ,

where the first row lists all the elements of X, and we indicate under each one
of them its image under f .

Example 3.2. The map

g =

1 2 3

2 1 3


is the permutation of {1, 2, 3} that sends 1 to 2, 2 to 1 and 3 to 3 (so: g(1) = 2,
g(2) = 1, g(3) = 3).

Definition 3.3. We denote by Sn the set of all permutations of {1, . . . , n}.

23
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Let us go back to our notation for elements of Sn:1 2 . . . , n

i1 i2 . . . in


denotes the map that sends 1 to i1, 2 to i2, . . . , n to in. Observe that since this
map is bijective, we have:

1. i1, i2, . . . , in are all different (because it is injective);

2. the list i1, i2, . . . , in contains all the elements 1, 2, . . . , n, just possibly in
a different order (because the map is surjective).

Proposition 3.4. The set Sn has n! elements.

Proof. To construct an element of Sn we have to give the sequence i1, i2, . . . , in.
We have n choices for i1, n − 1 choices for i2 (since it has to be different from
i1, n− 2 choices for i3, . . . , 2 choices for in−1, and finally only one choice for in
(the only remaining element). The total number of possibilities in building an
element of Sn is therefore

n · (n− 1) · (n− 2) · · · 2 · 1 = n!.

Remark 3.5. The value of n! grows quite quickly as n increases. For instance
3! = 6, 4! = 24, 5! = 120, . . . , 10! = 3628800, . . . ,

50! = 3041409320171337804361260816606476884437764156896051200000000000.

So we will only see examples with small values of n.

If σ and γ are in Sn, i.e., are bijective maps from {1, . . . , n} to {1, . . . , n}, we
know that σ ◦ γ and γ ◦ σ are also bijective maps from {1, . . . , n} to {1, . . . , n}.
i.e. belong to Sn (see Proposition 0.15).

Notation 3.6. We will constantly use the composition of elements of Sn, so to
make the notation a bit easier, we will almost always drop the symbol ◦, i.e. we
will simply write σγ for the composition of maps σ ◦ γ. We will also simply call
◦ the product on Sn.

Remark 3.7. Remember that the composition of maps is computed from right
to left, i.e. σ ◦ γ(x) = σ(γ(x)). So if γ(1) = 6 and σ(6) = 3, then σγ(1) = 3.

Examples 3.8. 1. Compute σγ and γσ where

σ =

1 2 3 4

3 1 2 4

 , γ =

1 2 3 4

3 1 4 2

 .

Solution:

σγ =

1 2 3 4

2 3 4 1

 .

How did we obtain this?
γ sends 1 to 3 and σ sends 3 to 2, so σγ(1) = 2. Similarly:
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γ(2) = 1 and σ(1) = 3, so σγ(2) = 3;
γ(3) = 4 and σ(4) = 4, so σγ(4) = 4;
γ(4) = 2 and σ(2) = 1, so σγ(4) = 1.

We also obtain (exercise, do it and check that you get the right result)

γσ =

1 2 3 4

4 3 1 2

 .

Observe that σγ ̸= γσ. It means that the order in which we write the
elements can change the result! (So be careful about the order.)

2. Compute σ2 (= σσ) and σ3 (=σσσ) with the same σ as above.
Solution:

σ2 =

1 2 3 4

2 3 1 4

 ,

σ3 =

1 2 3 4

1 2 3 4

 .

Observe that we obtain σ3 = Id. We will come back to this later (in
Proposition 3.15).

3. Compute 1 2 3 4 5

3 1 4 5 2

1 2 3 4 5

5 2 1 3 4

 .

Remark 3.9. In the above example we obtained that σγ ̸= γσ, so the compo-
sition of elements of Sn (the product on Sn) is not commutative: The order in
which we compute the product does matter!

This is something that does occur in the “real world”. A simple example
can be provided by a square (in space) with a different colour at each vertex, for
instance:

Let σ be the operation “rotate the square counterclockwise by 90 degrees”, and
let γ be the operation “flip the square around the horizontal axis”:

σ :

γ :
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Imagining the movements of the square in space (or cut a square piece of paper
and colour its corners), we obtain:

σγ :

(remember, we apply γ first)

γσ :

(this time we appled σ first).

The first two statements in the following proposition are general properties
of the composition of functions, and the third one is a direct consequence of the
fact that the elements of Sn are bijective maps.

Proposition 3.10. Let σ, γ, τ ∈ Sn. Then

1. (σγ)τ = σ(γτ) (the product in Sn is associative);

2. Idσ = σ Id = σ (Id is an identity element for the product in Sn);

3. For every σ in Sn there is a map γ in Sn such that σγ = γσ = Id (take
γ = σ−1). In other words, every element in Sn has an inverse.

Corollary 3.11. The set Sn, with operation the composition of maps, is a
group.

In particular every property that we have already proved for groups is true
in Sn.

Remark 3.12. How do we compute something like (σγ)2?
By definition it is the product of σγ by σγ, so:

(σγ)2 = (σγ)(σγ) = σγσγ.

WARNING:
As observed above, this product is not commutative, so we cannot change the
order of the elements in it. In particular we cannot regroup the σ and the γ
together and expect to get the same result: In general (σγ)2 ̸= σ2γ2. You can
use the following simple example to convince you of this:

σ =

1 2 3

2 1 3

 , γ =

1 2 3

1 3 2

 .

We have

σγ =

1 2 3

2 3 1

 , (σγ)2 =

1 2 3

3 1 2

 ,
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but

σ2 = γ2 =

1 2 3

1 2 3

 = Id, so σ2γ2 =

1 2 3

1 2 3

 = Id .

Since Sn is a group, we can use what we already proved about groups:

Proposition 3.13. 1. Let σ, σ1, . . . , σk ∈ Sn. Then

(σ1σ2 · · ·σk)
−1 = σ−1

k σ−1
k−1 · · ·σ

−1
2 σ−1

1 .

2. Let σ, γ, τ ∈ Sn. Then

σγ = στ implies γ = τ,

and
γσ = τσ implies γ = τ.

In other words, it is possible to cancel on the left and on the right.

Proof. The first part is Lemma 2.7, and the second is Lemma 2.10. To get a bit
of extra practice, we redo the proof of some of it: Since σγ = στ , we still have
an equality if we compose on the left by σ−1:

σ−1σγ = σ−1στ,

so (using Proposition 3.10):

(σ−1σ)γ = (σ−1σ)τ,

which gives, since σ−1σ = Id: Id γ = Id τ , so γ = τ .

Example 3.14. 1. 1 2 3 4

2 4 1 3

−1

=

1 2 3 4

3 1 4 2

 .

How did we obtain this? If σ(x) = y, then, applying the function σ−1

(let’s not forget that the elements of Sn are functions) to both sides, we
obtain σ−1(σ(x)) = σ−1(y), i.e. σ−1(y) = x. In other words, σ−1 is just
σ in “reverse” order.

2. Check that (σk)−1 = (σ−1)k. We denote this element by σ−k.

3. We will not spend the time to check it carefully, but the following is easy
to check (there are many cases to consider, and it is not very interesting):
For every σ ∈ Sn and every r, s ∈ Z, we have

σrσs = σr+s,

with the convention that σ0 = Id.

Proposition 3.15. Let σ ∈ Sn. Then there is k ∈ N (which may depend on σ)
such that σk = Id. Recall that the smallest such k is called the order of σ.
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Proof. We already proved this result (and saw this definition) for groups.

Example 3.16. Determine the order of

1 2 3 4

3 1 2 4

.

(How to do this? Compute the successive powers of this element of Sn and
stop when you get the identity map:1 2 3 4

1 2 3 4

 .

We will see later a more efficient way to compute the order of an element of
Sn.)

3.1 Cycles

Definition 3.17. A permutation σ ∈ Sn is called a cycle of length k if there
are elements a1, . . . , ak ∈ {1, . . . , n}, all different, such that

σ(a1) = a2, σ(a2) = a3, . . . , σ(ak−1) = ak, σ(ak) = a1,

and σ(x) = x for all the other elements of {1, . . . , n} (σ does not move the other
elements).

We write (a1 a2 · · · ak) to denote the cycle σ.

Remark 3.18. 1. Observe that (a1 a2 · · · ak) = (ai ai+1 · · · ak a1 a2 · · · ai−1)
for every i in {1, . . . , k} (so we can start writing the cycle where we want,
as long as we “cycle”).

2. A cycle of length one: (a), is the identity map, because it sends a to a,
and it does not move the other elements.

Example 3.19.

σ =

1 2 3 4 5 6 7

6 3 5 1 4 2 7

 = (1 6 2 3 5 4) = (2 3 5 4 1 6)

is a cycle of length 6. Observe again that if an element x does not appear in the
cycle notation, we have σ(x) = x. For instance here σ(7) = 7.

τ =

1 2 3 4 5 6

1 4 2 3 5 6

 = (2 4 3)

is a cycle of length 3.
Not every permutation is a cycle:1 2 3 4 5 6

2 4 1 3 6 5

 = (1 2 4 3)(5 6)

is a product of a cycle of length 4 and a cycle of length 2, and is not a cycle.
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Proposition 3.20. The order of a cycle of length k is k.

Definition 3.21. Two cycles in Sn, (a1 a2 · · · ak) and (b1 b2 · · · bℓ), are called
disjoint if ai ̸= bj for all i and j.

Example 3.22. The cycles (in S6) (1 2 6) and (3 5) are disjoint, the cycles
(1 3 5) and (3 6) are not. Computing their products, we observe:

(1 2 6)(3 5) = (3 5)(1 2 6),

but

(1 3 5)(3 6) =

1 2 3 4 5 6

3 2 6 4 1 5

 = (1 3 6 5) ̸=

(3 6)(1 3 5) =

1 2 3 4 5 6

6 2 5 4 1 3

 = (1 6 3 5).

Proposition 3.23. Let σ and γ be two disjoint cycles in Sn. Then σγ = γσ.

How can we prove this?

How can we prove an equality σ = τ when σ and τ are in Sn?
We can sometimes do it with a clever computation if we have some
information about σ and τ , but there is another way that is sometimes
useful.
Remember that both σ and τ are functions from {1, . . . , n} to {1, . . . , n}.
And two functions are equal if they always return the same value. So
σ = τ if for every x ∈ {1, . . . , n} we have σ(x) = τ(x).

Proof. Write σ = (a1 a2 · · · ak) and γ = (b1 b2 · · · bℓ). We have to show that
σγ(x) = γσ(x) for every x ∈ {1, . . . , n}.

If x ̸∈ {a1, . . . , ak, b1, . . . , bℓ} then σ(x) = x and γ(x) = x, so σγ(x) = x =
γσ(x).

If x = ai ∈ {a1, . . . ak}. By definition of σ, σ(ai) = aj where j = i + 1 if
i ∈ {1, . . . , k} and j = 1 if i = k. Observe also that γ(ai) = ai and γ(aj) = aj
since the cycles are disjoint and thus ai, aj ̸∈ {b1, . . . , bℓ}. Therefore

σγ(ai)) = σ(γ(ai)) = σ(ai) = aj ,

and

γσ(ai) = γ(aj) = aj .

If x = bi ∈ {b1, . . . , bℓ}. The argument is similar to the previous one and is
left as an exercise.

Theorem 3.24. Every element of Sn can be written as a product of disjoint
cycles.
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First observe that in this product we do not need to write the cycles of length
one because they are all equal to the identity (and Idσ = σ Id = σ, so it is not
necessary to indicate it in a product).

Idea of the proof: Before we start with the proof, let us consider an
example. Let

σ = (a1 a2 a3 a4)(b1 b2 b3),

be a product of two disjoint cycles.
If we only have σ in the usual form of a table with two rows, how can we

find the two cycles (a1 a2 a3 a4) and (b1 b2 b3)?
Assume for a few seconds that we have the element a1. Then, using the fact

that

σ = (a1 a2 a3 a4)(b1 b2 b3),

we get σ(a1) = a2, σ(a2) = a3, σ(a3) = a4, and finally σ(a4) = a1. So: Starting
with a1 we found all the other elements of the first cycle by successively applying
σ (and we stop when we are back at a1).

What if we do not have a1 to start with? If we have, for instance, a3, we do
the same:

a4 = σ(a3), a1 = σ(a4), a2 = σ(a1), a3 = σ(a2), a4 = σ(a3).

But what if we don’t have one of the ai? If we have one of the bi, it will
work in the same way. And if we start with an element x that is not an ai or bi,
we get σ(x) = x, so our cycle construction stops at once and we get the cycle
(x) which is the identity map.

The proof of the Theorem is a formalization of this idea: We start with an
element and keep applying σ to it: It will give us the first cycle. Then take a
new element an keep applying σ to it, it will give us the second cycle, etc.

Proof of Theorem 3.24. Let σ ∈ Sn. We first define X1 = {1, σ(1), σ2(1), . . .}.
The set X1 is finite, since it is included in {1, . . . , n}.

Fact 1: X1 = {1, σ(1), σ2(1), . . . , σk(1)} for some k ∈ N, with σk+1(1) = 1.
Proof of Fact 1: Since X1 in included in {1, . . . , n} which is finite, the sequence
1, σ(1), σ2(1), . . . must repeat itself at some point. Let k be the smallest integer
such that σk+1(1) ∈ {1, σ(1), . . . , σk(1)}. Then X1 = {1, σ(1), . . . , σk(1)} and
we only have to check that σk+1(1) = 1. Assume that σk+1(1) = σi(1) for
some i ∈ {1, . . . , k}. Then, applying σ−i to both sides of the equality, we get
σk−i+1(1) = 1. Since k− i+1 < k+1, we find that k− i has the same property
as k but is smaller, which is impossible by choice of k. End of the proof of Fact
1.

If X1 = {1, . . . , n} we stop here, otherwise let i be the first element of
{1, . . . , n} not in X1, and define X2 = {i, σ(i), σ2(i), . . .}. As above X2 =
{i, σ(i), σ2(i), . . . , σℓ(i)} where σℓ+1(i) = i.

Observe that X1 and X2 are disjoint: If it were not the case, we would have
σs(1) = σt(i) for some integers s, t. Assume for instance that t ≤ s (the case
t > s is similar). Then, applying σ−t to both sides, we get σs−t(1) = i, which
is impossible since i ̸∈ X1 by choice.

If X1 ∪X2 = {1, . . . , n}, we stop here, otherwise let j be the first element of
{1, . . . , n} not in X1 ∪X2, and we define X3 in the same way as X1 and X2.
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Continuing in this way, we obtain disjoint setsX1, . . . , Xr such that {1, . . . , n} =
X1 ∪X2 ∪ · · · ∪Xr, and if we define σi to be the cycle

σi(x) =

{
σ(x) if x ∈ Xi

x otherwise

then σ = σ1σ2 · · ·σr, and these cycles are disjoint since the sets Xi are disjoint.

Example 3.25. As observed before it, the proof of the previous theorem is
actually an algorithm to write σ as a product of disjoint cycles. We apply it to

σ =

1 2 3 4 5 6

3 2 1 6 4 5

 .

Take an element of {1, . . . , n}, for instance 1, and keep applying σ. It will give
us the first cycle: (1 3). Then take another element, for instance 2, and keep
applying σ. It gives us the second cycle: (2). Then take another element, for
instance 4, and keep applying σ. It gives us the third cycle: (4 6 5). There is
no element left, so we stop:

σ = (1 3)(2)(4 6 5).

Finally, we can observe that a cycle of length one is equal to the identity, so we
do not need to write it, and we obtain:

σ = (1 3)(4 6 5).

(In the terminology of the proof: X1 = {1, 3}, X2 = {2}, X3 = {4, 6, 5}, and

σ1 = (1 3), σ2 = (2), σ3 = (4 6 5).

You can notice that the cycles σi are simply given by the sets Xi (if we list their
elements as they are obtained in the proof by successive applications of σ).)

As exercise, you should consider some of the permutations we already saw
and write them as products of disjoint cycles.

Exercise 3.26. Write as a product of disjoint cycles the following permutations
(the answer is indicated for the first two, so that you can check what you do):

1.

1 2 3 4

3 1 2 4

 = (1 3 2)(4) = (1 3 2).

2.

1 2 3 4 5 6

3 6 1 5 4 2

 = (1 3)(2 6)(4 5).

3.

1 2 3 4

3 1 4 2

.
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4.

1 2 3 4 5

4 3 2 5 1

.

Writing a permutation as a product of disjoint cycles provides an easy way
to compute its order:

Proposition 3.27. Let σ = σ1 · · ·σk where σ1,. . . , σk are disjoint cycles. Then

|σ| = lcm(|σ1|, . . . , |σk|).

Recall that lcm(n1, . . . , nk) denotes the least common multiple of n1, . . . , nk.

The proof is in the exercise sheets.

3.2 Transpositions

Definition 3.28. A transposition is a cycle of length 2, i.e. is a permutation
of the form (a b) with a ̸= b, which sends a to b, b to a, and does not move the
other elements.

Observe that

1. A transposition is never the identity map.

2. (a b)−1 = (a b). The reason is that (a b)(a b) = Id.

3.

(a1 a2 · · · ak) = (a1 ak)(a1ak−1) · · · (a1 a3)(a1 a2),

so that every cycle can be written as a product of transpositions. Com-
bining this with Theorem 3.24 we obtain

Theorem 3.29. Every permutation can be written as a product of transposi-
tions.

Example 3.30. A simple computation shows that

(1 6)(2 5 3) = (1 6)(2 3)(2 5) = (1 6)(4 5)(2 3)(4 5)(2 5).

From this we conclude that there can be several different ways to write a per-
mutation as a product of transpositions.

But we will see below that the parity of the number of transpositions used to
express a given permutation is fixed: No permutation can be written as a product
of an odd number of transpositions and also of an even number of transpositions.
This fact has important consequences (but we will not see them, sorry).

Lemma 3.31. If the identity permutation can be written as a product of r
transpositions, then r is even.

(The proof of this lemma is possibly the trickiest of this section, feel free to
skip it on first reading.)
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Proof. We proceed by induction on r. A transposition cannot be the identity,
so r > 1. If r = 2, we are done. Suppose that r > 2, and that

Id = τ1τ2 · · · τr.

We consider the product τr−1τr. It has to be one of the following cases, for
some a, b, c, d all different (we also indicate how they can be re-written):

(a b)(a b) = Id,

(b c)(a b) = (a c)(b c),

(c d)(a b) = (a b)(c d),

(a c)(a b) = (a b)(b c).

In the first case, we have Id = τ1τ2 · · · τr−2. By induction r − 2 is even, so r is
even.

In all the other cases, we rewrite the product τr−1τr as indicated. The main
point is that now the element a appears in τr−1 and not in τr. We repeat this
process with the product τr−2τr−1 and we obtain either that it is equal to Id, in
which case we conclude by induction, or we rewrite τr−2τr−1 as above in such
a way that a only appears in τr−2.

If we keep doing that, either we will at some point that Id is a product
of r − 2 transposition (if we obtain a product of two successive transpositions
that is the identity) and conclude by induction, or we will have rewritten this
product so that a only appears in τ1, so τ1 is of the form (a b) for some b ̸= a.
But in this case (τ1 · · · τr)(a) = b, so τ1 · · · τr ̸= Id, contradiction (so this case
cannot actually occur).

Theorem 3.32. Let σ ∈ Sn and assume that

σ = γ1 · · · γr,

σ = τ1 · · · τs,
where γ1, . . . , γr, τ1, . . . , τs are transpositions. Then r and s have the same par-
ity.

Proof. We have γ1 · · · γr = τ1 · · · τs. Therefore

(τ1 · · · τs)−1γ1 · · · γr = Id,

τ−1
s · · · τ−1

1 γ1 · · · γr = Id,

i.e., using that τ−1
i = τi:

τs · · · τ1γ1 · · · γr = Id,

so r + s is even by lemma 3.31. It follows that r and s are both even or both
odd.

Definition 3.33. Let σ be a permutation in Sn. We say that σ is odd if it can
be written as a product of an odd number of transpositions, and that σ is even
if it can be written as a product of an even number of transpositions. This is
referred to as the parity of the permutation σ.

Observe that, by Theorem 3.32, this notion is well-defined: σ is either even
or odd (and cannot be both).
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Chapter 4

Equivalence relations

Definition 4.1. Let S be a set. A binary relation R on S is a property
involving two elements of S. For x, y ∈ S we write xRy if the property is true
for x and y, and x ̸Ry if not.

Example 4.2. Some examples of binary relations are:

1. = (the equality between elements). It is defined between elements of any
set.

2. ≤. It is defined for instance between elements of R.

3. | (the divisibility relation: x|y means “x divides y”), defined between ele-
ments of Z.

4. It can also be something arbitrary, for instance we can define, for x, y ∈ N:
xRy if and only if x− y =

√
x.

Some binary relations have nice properties and are often useful in mathe-
matics:

Definition 4.3. Let S be a set. A binary relation ∼ on S is called an equivalence
relation if it possesses the following properties, for every x, y, z ∈ S:

1. x ∼ x (we say that ∼ is reflexive);

2. x ∼ y implies y ∼ x (we say that ∼ is symmetric);

3. x ∼ y and y ∼ z imply x ∼ z (we say that ∼ is transitive).

Of the relations in Example 4.2, only the equality is an equivalence relation.
The relation ≤ is not symmetric: 2 ≤ 3 but 3 ̸≤ 2. The division relation is also
not symmetric: 2|6 but 6 ̸ | 2, and the fourth relation in the example is not even
reflexive: 2 ̸R 2.

Example 4.4. Here are some other examples.

1. If S is the set of all pens, the relations “pen 1 has the same colour as pen
2” is an equivalence relation.

35
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2. Let S the the set of 2× 2 matrices. The relation defined on S by A ∼ B if
there is an invertible matrix P such that P−1AP = B, is an equivalence
relation (exercise; and it is a useful relation in linear algebra).

3. Let S be the set of all real differentiable functions. The relation defined by
f ∼ g if f ′ = g′ is an equivalence relation (exercise).

Equivalence relations are very useful in practice to regroup elements that
share some common property. This is possible because, given an equivalence
relation, we can associate a set to every element:

Definition 4.5. Let ∼ be an equivalence relation on a set S and let a ∈ S. The
set

[a] = {y ∈ S | a ∼ y}
of all elements of S that are in relation with a, is called the equivalence class
of a.

Example 4.6. If we go back to Example 4.4(1): Let a be a red pen. The
equivalence class of a is the set of all red pens:

[a] = {b ∈ S | a is in relation with b}
= {pens b | a has the same colour as b}
= {all red pens}.

Lemma 4.7. Let ∼ be an equivalence relation on a set S and let a, b ∈ S be
such that b ∈ [a]. Then [b] = [a].

Proof. The hypothesis b ∈ [a] means (by definition) a ∼ b, and so we have b ∼ a
by symmetry.

The statement [b] = [a] is an equality between sets, so to prove it we need
to show that the sets [b] and [a] contain exactly the same elements:

Let x ∈ [b], i.e. b ∼ x. Then we have a ∼ b and b ∼ x. Using transitivity we
obtain a ∼ x, i.e. x ∈ [a].
Let x ∈ [a], i.e. a ∼ x. But we know that a ∼ b, i.e. b ∼ a. So we have b ∼ a
and a ∼ x. Using transitvity we obtain b ∼ x, i.e. x ∈ [b].

Corollary 4.8. Let ∼ be an equivalence relation on a set S and let a, b ∈ S.
Then a ∼ b if and only if [a] = [b].

Proof. Assume first that a ∼ b. Then b ∈ [a] and the conclusion follows by
Lemma 4.7.

Assume now that [a] = [b]. Since b ∈ [b] (because b ∼ b), we have b ∈ [a], i.e.
a ∼ b.

Proposition 4.9. Let ∼ be an equivalence relation on a set S and let a, b ∈ S.
Then either [a] = [b] or [a] ∩ [b] = ∅.

In other words: two equivalence classes are either equal or have no common
element.

Proof. We want to show that [a] = [b] and [a] ∩ [b] = ∅ are the only two
possibilities. So we assume that one of them does not hold for our choice of a
and b, and check, using this knowledge, that the other then necessarilly holds.

So we assume (for instance) that [a] ∩ [b] ̸= ∅, so there is c ∈ [a] ∩ [b]. By
Lemma 4.7 we deduce [c] = [a] and [c] = [b], so [a] = [b].
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Example 4.10. This is an example of a more “graphical” equivalence relation.
We define it between points of the plane R2.

For θ ∈ R we denote by rθ the rotation of centre O = (0, 0) and angle θ.
For x, y ∈ R2, we define

x ∼ y

⇔

there is θ ∈ R such that y = rθ(x)

(i.e., y can be obtained from x by a rotation of centre O).
This relation is an equivalence relation:

(1) x ∼ x: Becauce x = r0(x).
(2) x ∼ y ⇒ y ∼ x: Because, if y = rθ(x), then x = r−θ(y) (so y ∼ x).
(3) (x ∼ y and y ∼ z) ⇒ x ∼ z: Because x ∼ y and y ∼ z mean y = rθ(x) and
z = rα(y) for some angles θ and α. Then z = rα(rθ(x)) = rα+θ(x), so x ∼ z.

What is the equivalence class of x?

[x] = {y ∈ R2 | y can be obtained from x by a rotation of centre O}
= the circle of centre O containing x.

x [x]

O

[z]

z

Observe that we can see that the result of Proposition 4.9 is correct: The
equivalence classes are the circles of centre O, and clearly two such circles are
either equal or have no common element.
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Chapter 5

Groups, part 2

We saw in the previous chapter that Sn is a group. We first see some more
examples of groups.

5.1 Symmetry groups

Imagine an objcet T in space. A symmetry of T is a movement of T such that
at the end of it the object T occupies the exact same place in space. This is a
somewhat informal definition (what is a movement?) but it will be enough for
us.1

Examples 5.1. 1. If T is a triangle ABC where |AB| = |AC| and is longer
that |BC|:

A

B C
∆

Then the only symmetries of T are the identity (T does not move) and
the reflexion across the line ∆ (T is “flipped”).

2. Let T be a kind of triskelion (see the coat of arms of the isle on Man or
of Sicily), and let O be the “middle” of T :

O

1If you really want to know: A movement should be defined as a bijection f : R3 → R3

that does not modify the distances, i.e. for every points A,B, the distance between f(A) and
f(B) is the same as the distance between A and B.

39
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Then the only symmetries of T are the identity and the rotations of centre
O and angles 120◦, 240◦.

Lemma 5.2. The symmetries of T , with operation the composition of maps, is
a group. Its identity element is the identity map.

Proof. If we composote two symmetries of T , we still get a symmetry of T (T
still ends up at the same place). The composition of isometries is associative
since it is simply a composition of maps (which is always associative). The
identity map is the identity element. The inverse of a symmetry is simply the
“reverse movement” (in terms of maps: the inverse map).

In the examples above the symmetry groups were all finite. It is not neces-
sarilly the case. For instance a circle with centre O has an infinite number of
symmetries (all the rotations of centre O are symmetries; there are others).

Symmetry groups are a convenient way to investigate the symmetries of ob-
jects or of repeating patterns, and have found applications in crystallography
(description of crystal patterns), chemistry (symmetries of molecules, etc), com-
puter graphics (repeating patterns to fill some space), arts (Escher drawings)...

5.2 The Klein 4-group

The Klein 4-group V4 is the symmetry group of a rectangle that is not a
square. The symmetries of a rectangle are:

� The identity map Id (the identity element of the group),

� h, the reflection across the horizontal axis H,

� v, the reflection across the vertical axis V , and

� r, the rotation of π radians around the center.

V

H

Obviously (consider how the rectangle moves; use a rectangle of paper if you
want) we have:

h2 = v2 = Id, hv = vh = r.

5.3 The dihedral group of order 2n

Definition 5.3. Let n ≥ 3. The dihedral group of order 2n is the symmetry
group of a regular n-sided polygon. This group is denoted by D2n.

Here are the first 6 regular n-sided polygons:
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Let us fix a regular n-sided polygon, let O be the centre of this polygon and let
∆ be a fixed line going through a vertex of the polygon and the point O (it is a
line of mirror symmetry of the polygon). For convenience, we also number the
vertices of the polygon from 1 to n. For n = 6 it would look like:

∆
O 1

3

4

5 6

2

We denote by s the mirror symmetry across ∆ and by r the rotation of centre
O and angle 2π/n. Both are clearly elements of D2n.

There are exactly 2n elements in D2n (see exercise sheets), and they can all
be expressed as follows

Id, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1. (5.1)

Observe that the following properties also hold:

rn = Id,

s2 = Id,

sr = rn−1s.

(For this last one you can cut a polygon in a piece of paper and try it “for real”.)

Exercise 5.4. When n = 6, take a few isometries of the regular hexagon (for
instance: The reflection across the line (3 6), the rotation of angle 240◦, the
rotation of angle 120◦ followed by the reflection across the line ∆) and express
then in the form (5.1).

Remark 5.5. Some people write Dn when we write D2n (they indicate the
number of sides of the polygon, while we indicate the number of elements of the
group), so be careful, if you look at something in a book or online, to check what
terminology is used.



42 CHAPTER 5. GROUPS, PART 2

5.4 Cayley tables

Definition 5.6. The Cayley table of a group is simply the table of the group
operation (see examples below). There is no particular order in which you should
list the elements of the group in the starting row and column.

Examples 5.7. 1. Consider the Klein 4-group V4. We completely described
it, and its Cayley table is

· Id h v r

Id Id h v r

h h Id r v

v v r Id h

r r v h Id

2. Consider the group S3. Its elements are:

Id, τ1 = (2 3), τ2 = (1 3), τ3 = (1 2),

ω1 = (1 2 3), ω2 = (1 3 2).

We know there are no other elements because |S3| = 6 and the above
elements are all different.

The Cayley table of S3 is (check a few of them to be sure you get the idea).

· Id ω1 ω2 τ1 τ2 τ3

Id Id ω1 ω2 τ1 τ2 τ3

ω1 ω1 ω2 Id τ3 τ1 τ2

ω2 ω2 Id ω1 τ2 τ3 τ1

τ1 τ1 τ2 τ3 Id ω1 ω2

τ2 τ2 τ3 τ1 ω2 Id ω1

τ3 τ3 τ1 τ2 ω1 ω2 Id

5.5 Subgroups

It is possible for a group to be inside another group (for instance Z ⊆ R, both
with the operation +). This is the object of the next definition.

Definition 5.8. Let G be a group. If H is a non-empty subset of G such that
H, equipped with the operation from G, it itself a group, then H is called a
subgroup of G.

So to check if a subset H of G is a subgroup, you have several things to
check

1. That h1h2 ∈ H for every h1, h2 ∈ H. Why? Because in a group, the
product of two elements is always an element of the group.
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2. That all the properties of group hold for (H, ⋆) (if we call ⋆ the operation
of G).

Lemma 5.9. If H is a subgroup of G, the identity of the group H is the same
as the identity of G, and if a ∈ H, then the inverse of a computed in the group
H is the same as the inverse of a computed in the group G.

Proof. Let eH be the identity of H. We have aeH = a for every element of H
and therefore

eHeH = eH .

Now multiplying both sides of this equality on the left by e−1
H (in G) gives us

eH = e.
Let a ∈ H and let us denote by ã the inverse of a computed in the group

H. We have aã = e (since eH = e) and aa−1 = e. Therefore aã = aa−1 and
multiplying both sides on the left by a−1 gives ã = a−1.

Easier way to check when we have a subgroup

Suppose we have a subset H of a group G, and want to check if it is
a subgroup. Since G is already a group, we do not need to check if H
satisfies all the properties in the definition of group, some of them will
be automatically true, and we only have to check much less:

Proposition 5.10. Let G be a group and let H be a subset of G. The following
are equivalent:

1. H is a subgroup of G.

2. The following three properties hold:

(a) H ̸= ∅,
(b) For every a, b ∈ H, ab ∈ H,

(c) For every a ∈ H, a−1 ∈ H.

Proof. If H is a subgroup of G, it is in particular a group, so it is non-empty
since it contains an identity element. We also know that the product of two
elements and the inverse of one element of a group are still in the group.

Assume now that all three properties hold. We want to check that H is
a group. The first thing to check is that the product of elements of H gives
an element of H. This is true by the second property. The first point in the
definition of group (associativity of the product) is true because G is a group
and we know that the product is associative. The second point in the definition
of group is the existence of an identity element in the group: We know that
H is non-empty, so let us take a ∈ H. Then a−1 ∈ H and so e = aa−1 ∈ H.
Finally we know that if a ∈ H then the inverse of a is in H, which provides the
last property in the definition of group.

Example 5.11. 1. Let n ∈ Z. Then nZ(= {nx | x ∈ Z}), the set of all
multiples of n, is a subgroup of the group (Z,+) (actually every subgroup
of (Z,+) is of the form nZ for some well-chosen n, we will see this in an
exercise sheet). We simply check the 3 conditions of proposition 5.10:



44 CHAPTER 5. GROUPS, PART 2

(a) Clearly nZ is non-empty.

(b) If a, b ∈ nZ (i.e., a, b are multiples of n), then a+ b is also a multiple
of n i.e., a + b ∈ nZ (observe that the group operation is +, so it is
what we use between a and b).

(c) If a ∈ nZ then −a ∈ nZ. (Here: The identity element of (Z,+) is 0,
and thus the inverse of a is −a, because a+ (−a) = 0).

2. Q\{0} is a subgroup of the group (R\{0}, ·). It is left an exercise. Again,
use proposition 5.10.

Definition 5.12. Let G be a group. The centre of G, denoted Z(G), is the set
of elements of G that commute with all elements of G:

Z(G) = {a ∈ G | ax = xa for every x ∈ G}.

Proposition 5.13. Z(G) is a subgroup of G.

Proof. Exercise.

Definition 5.14. Let G be a group and let A be a non-empty subset of G.
We denote by ⟨A⟩ the set of all possible products of elements of A and of their
inverses. By Proposition 5.10, ⟨A⟩ is a subgroup of G (more on this in a few
lines), called the subgroup generated by A.

We say that G is generated by A if G = ⟨A⟩ (we also say that A is a set
of generators of G).

IfA = {a1, . . . , ak} we often simply write ⟨a1, . . . , an⟩ instead of ⟨{a1, . . . , an}⟩.
Remark 5.15. Why is ⟨A⟩ a subgroup? By definition:

⟨A⟩ = {x1x2 · · ·xn | n ∈ N, xi = ai or xi = a−1
i with ai ∈ A}.

(Again: ⟨A⟩ is the set of all possible products of elements of A and their in-
verses.)

We now use proposition 5.10:

1. Clearly ⟨A⟩ is non-empty (since A is non-empty).

2. If a, b ∈ ⟨A⟩, then ab ∈ ⟨A⟩ (it is just a longer product of elements of A
and their inverses).

3. If a ∈ ⟨A⟩ then a−1 ∈ ⟨A⟩ (the inverse of a product of elements of A and
their inverses is still of this form).

Definition 5.16. A group generated by only one element is called a cyclic
group.

Remark 5.17. In other words, G is a cyclic group if there is a ∈ G such that

G = ⟨a⟩ = {. . . , a−2, a−1, e, a, a2, a3, . . .}.

Observe that G can be finite:
If o(a) = n < ∞, then an = e. Therefore:

an+1 = a, an+2 = a2, . . .

a−1 = an−1, a−2 = an−2, . . .

so that
⟨a⟩ = {e, a, a2, . . . , an−1}.
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The last line of this remark gives us the following result:

Proposition 5.18. Let G be a group and let a ∈ G be such that o(a) is finite.
Then

o(a) = |⟨a⟩|.

(The order of a is equal to the number of elements in the subgroup generated by
a.)

Examples 5.19. 1. The Klein 4-group is generated by h and v. But also by
h and r, or by v and r. (In particular you can see that a group can have
different sets of generators.)

2. The dihedral group D2n is generated by r and s.

3. The symmetric group Sn is generated by the transpositions (see Proposi-
tion 3.29). It is also generated by the cycles.
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Chapter 6

Cosets and Lagrange’s
theorem

We begin by revisiting what we saw when looking at Z/nZ.
Recall that two numbers that differ by a multiple of n are equal in Z/nZ, so

we use this as the definition of a relation:

x ∼ y ⇔ x− y ∈ nZ. (6.1)

It is easy to check that this relation is an equivalence relation. And for x ∈ Z,
the equivalence class of x is: relation is:

[x] = {y ∈ Z | x ∼ y}
= {y ∈ Z | x− y ∈ nZ}
= {x+ k | k ∈ nZ}
= x+ nZ
(= {. . . , x− 2n, x− n, x, x+ n, x+ 2n, x+ 3n, . . .}).

So the equivalence class of x is the set of all integers that are equal to x on the
n-hours clock.

We want to extend this equivalence relation to arbitrary groups, so we replace
Z by an arbitrary group G, and the subgroup nZ of Z by a subgroup H of G.
It will turn out to be quite useful:

Definition 6.1. Let G be a group and let H be a subgroup of G. We define an
equivalence relation ∼H between elements of G by

x ∼H y ⇔ y−1x ∈ H.

We write x = y mod H if x ∼H y and say that x is equal to y modulo H.

Observe that the definition of ∼H follows exactly the pattern of (6.1), we are
just usingH instead of nZ and a multiplicative notation for the group operation:
For a Abelian group (G,+) where the operation is denoted by the symbol + (so
for instance (Z,+)) we would write

x ∼H y ⇔ −y + x ∈ H ⇔ x− y ∈ H.
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Lemma 6.2. The relation ∼H is an equivalence relation.

Proof. We check the three properties of equivalence relations:
We have x ∼H x because x−1x = e ∈ H.
Assume x ∼H y, i.e. y−1x ∈ H. Since H is a subgroup, we have (y−1x)−1 ∈ H,
i.e. x−1y ∈ H, in other words y ∼H x.
Finally assume x ∼H y and y ∼H z, i.e. y−1x ∈ H and z−1y ∈ H. Since H is a
subgroup we have (z−1y)(y−1x) ∈ H, i.e. z−1x ∈ H, which gives x ∼H z.

Proposition 6.3. The equivalence class of a ∈ G for the relation ∼H , denoted
ā in this case, is:

a = aH,

where aH is defined as follows

aH := {ax | x ∈ H}.

Proof. We want to show an equality between two sets. One way to do this is to
show that they contain exactly the same elements, i.e. that each set is contained
in the other.

We start with b ∈ a and show that b ∈ aH. By definition of a we have a ∼ b
i.e, b−1a ∈ H, so there is x ∈ H such that b−1a = x. We solve for b: Multiplying
both sides on the left by b give a = bx, and on the right by x−1 gives b = ax−1,
which belongs to aH since x−1 ∈ H.

Take now b ∈ aH, i.e. b = ax for some x ∈ H. Then b−1a = x−1a−1a =
x−1 ∈ H, so a ∼H b, i.e. b ∈ a.

Definition 6.4. Let H be a subgroup of G. A set of the form aH, for somce
a ∈ G, is called a left coset of H. A right coset of H is a set of the form
Ha.

Remark 6.5. 1. In general we do not have aH = Ha. See exercise sheets
for an easy counter-example.

2. We could define another equivalence relation on G by x ∼′
H y if and

only if xy−1 ∈ H. The equivalence class of an element a would then be
Ha = {xa | x ∈ H}. This whole chapter can actually be written using this
equivalence relation and right cosets instead of left cosets.

The next result is the key to Lagrange’s theorem, and we have already proved
most of it.

Proposition 6.6. 1. Assume H is finite and let a ∈ G. Then |aH| = |H|
(= |Ha|).

2. Every element of G belongs to a left coset of H.

3. Any two left cosets of H are equal or have no element in common.

Proof. 1. To show that H and aH have the same number of elements we
define a bijection between them:

f : H → aH, x 7→ ax.
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f is injective: Assume that ax = ay. Then, multiplying on the left by a−1

we obtain x = y.
f is surjective: Every element of aH is in the image of f by definition of
f .

2. We know that x ∼H x since ∼H is an equivalence relation, which means
x ∈ x = xH.

3. This is a consequence of Proposition 4.9 since the left cosets of H are
equivalence classes.

Theorem 6.7 (Lagrange’s Theorem). Let G be a finite group and let H be a
subgroup of G. Then |H| divides |G|.

Proof. By Proposition 6.6, the group G is “paved” by the left cosets of H: Every
element belongs to one, and they do not overlap. In particular there are only
finitely many different left cosets of H: a1H, . . . , akH, and a picture would
look like this:

G

a1H a2H a3H

a4H

akH

Counting the elements of G, we obtain

|G| = |a1H|+ |a2H|+ · · ·+ |akH|
= |H|+ |H|+ · · ·+ |H| by Proposition 6.6

= k|H|.

Remark 6.8. 1. One of the remarkable aspects of this result is that the def-
initions of group and subgroup are algebraic conditions that do not appear
to require anything about the number of elements. But they actually do.

2. Lagrange’s theorem was not proved by Lagrange. The notion of group did
not even exist at the time. But he was the first (or one of the first) to
come up with similar ideas in the domain that would later give rise to the
notion of group (the study of solutions of polynomial equations).

Definition 6.9. Let G be a group and let H be s subgroup of G. The index of
H in G, denoted [G : H], is the number of distinct left cosets of H in G.

Remark 6.10. So by Lagrange’s theorem (or more precisely its proof):

[G : H] = |G|/|H|.
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The set of all left cosets of H in G is often denoted by G/H i.e.,:

G/H = {aH | a ∈ G},

so [G : H] = |G/H| = |G|/|H|.

Corollary 6.11. Let G be a finite group and let a ∈ G. Then o(a) divides |G|.

Proof. We saw in Proposition 5.18 that o(a) is equal to the number of elements in
⟨a⟩, the subgroup generated by a. The result follows by Lagrange’s theorem.

Corollary 6.12. Let G be a finite group and let a ∈ G. Then a|G| = e.

Proof. By the Corollary 6.11 |G| = k · o(a) for some k ∈ N. Therefore

a|G| = ako(a) = (ao(a))k = ek = e.

Theorem 6.13. Let G be a group such that |G| is a prime number. Then G is
a cyclic group.

Proof. Let p = |G|. Let a ∈ G such that a ̸= e (it exists since |G| = p ≥
2). Consider ⟨a⟩, the subgroup generated by a. It contains at least 2 dictinct
elements: e and a, so |⟨a⟩| ≥ 2. But |⟨a⟩| divides p, so, since p is prime, we must
have |⟨a⟩| = p = |G|, which gives ⟨a⟩ = G.

Observe that what we proved is slightly stronger than the conclusion of the
theorem: G is generated by any one of its elements that is not e.



Chapter 7

Isomorphisms

We begin with an example.
We consider the group (Z/2Z,+). Its Cayley table is

+ 0 1

0 0 1

1 1 0

We now define a group (G, ·) of order 2 by G = {a, b} and by giving the
table for the operation · (it is easy, but tedious, to check that (G, ·) is a group):

· a b

a a b

b b a

It should be clear that the groups (Z/2Z,+) and (G, ·) are the same, but with
+ written ·, 0 written a and 1 writen b.

We want to give a more precise definition for what it means to be “the
same”. We want a correspondence between the elements of both groups (i.e. a
bijection), and we also want that performing the group operation in one group
of the other and comparing the results using this correspondence gives us the
same element.

Definition 7.1. Let (G, ·) and (H, ⋆) be two groups. A map f : G → H is
called an isomorphism (of groups) if the following holds

1. f is bijective.

2. For every a, b ∈ G, f(a · b) = f(a) ⋆ f(b) (i.e. computing the product a · b
in G and then moving the result to H is the same as first moving a and b
to H and then computing the product in H).

We say that the groups (G, ·) and (H, ⋆) are isomorphic if there is an isomor-
phism f : G → H, and we write G ∼= H.
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We can see that, in the above example, the map

f : Z/2Z → G, f(0) = a, f(1) = b

is an isomorphism.
Intuitively, two groups are isomorphic when they are “the same group”, the

only differences being that the elements and the operation are called differ-
ently (but their behaviour is the same, as stated in the second property in the
definition of isomorphism).

Lemma 7.2. Let f : G → H be an isomorphism, with notation as in Defini-
tion 7.1. Then

1. f(eG) = eH (where eG denotes the identity of G and eH the identity of
H).

2. For every a ∈ G, f(a−1) = f(a)−1.

Proof. 1. We have f(eG) = f(eG · eG) = f(eG) ⋆ f(eG). Multiplying on both
sides by the inverse of f(eG) we obttain eH = f(eG).

2. To check that f(a−1) = f(A)−1 we have to show that f(a−1) ⋆ f(a) = eH
and f(a) ⋆ f(a−1) = eH . We do the first one:
f(a−1) ⋆ f(a) = f(a−1 · a) = f(eG) = eH .

Proposition 7.3. Let f : G → H be an isomorphism, with notation as in
Definition 7.1. Then f−1 : H → G is an isomorphim.

Proof. We have to show that f−1 is bijective (this is clearly true) and that, for
every x, y ∈ H, f−1(x ⋆ y) = f−1(x) · f−1(y). We have

f−1(x ⋆ y) = f−1(x) · f−1(y) ⇔ f(f−1(x ⋆ y)) = f(f−1(x) · f−1(y)))

(since f is bijective)

⇔ x ⋆ y = f(f−1(x) · f−1(y)))

⇔ x ⋆ y = f(f−1(x)) ⋆ f(f−1(y)))

(since f is an isomorphism)

⇔ x ⋆ y = x ⋆ y,

which is true.
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Rings and fields

We introduced the notion of group as a convenient way to study common prop-
erties of structures that have a well-behaved binary operation.

But there are of course structures with two binary operations, for instance
Z, Q, R, C, Mn(R). In all these example the operations are a sum and a
product. And many more such structures appear in mathematics. For the same
reasons that groups where introduced, it makes sense to try to single out some
key properties of such structures, and see what general results can be deduced.

Definition 8.1. A ring is a triple (R,+, ·), where R is a non-empty set and +
and · are two binary operations on R, such that the following properties hold:

1. (R,+) is an abelian group. Its identity is denoted 0, and the additive
inverse of an element a is denoted by −a;

2. The product is associative (i.e. a(bc) = (ab)c for every a, b, c ∈ R);

3. There is an element in R, denoted by 1, such that a · 1 = 1 · a = a for
every a ∈ R (1 is the identity for ·).

4. The operation · is distributive over +, i.e. for every a, b, c ∈ R:

a(b+ c) = ab+ ac, and

(a+ b)c = ac+ bc.

Example 8.2. 1. Z, Q, R, C, Mn(R), Mn(Z), Z/nZ are all examples of
rings, when equipped with their usual sum and product.

2. N is not a ring, since (N,+) is not a group (there is no identity for +).
N ∪ {0} is also not a ring (there is no additive inverse).

3. Observe that the product need not be commutative, it is the case for in-
stance of Mn(R) when n ≥ 2.

Some people do not require the existence of the element 1 in the definition
of ring.

Lemma 8.3. Let (R,+, ·) be a ring. Then a · 0 = 0 · a = 0 for every a ∈ R.

53



54 CHAPTER 8. RINGS AND FIELDS

Proof. We only show a · 0 = 0, the other is similar. We have

a · 0 = a · (0 + 0)

= a · 0 + a · 0.

Adding −(a · 0) to both sides, we get 0 = a · 0.

Some rings, for instance Q, R, C, have the following extra properties:

1. The product is commutative;

2. Every non-zero element has a multiplicative inverse.

These rings are common enough and important enough in mathematics that
they deserve a separate definition:

Definition 8.4. A field is a triple (F,+, ·), where F is a non-empty set and +
and · are two binary operations on F , such that the following properties hold:

1. (F,+, ·) is a ring with 0 ̸= 1.

2. The operation · is commutative (i.e. ab = ba for every a, b ∈ F ).

3. For every a ∈ F \ {0}, there is an element a−1 such that a · a−1 = 1 (a−1

is called the inverse of a).

Remark 8.5. The condition 0 ̸= 1 allows us to avoid an uninteresting case:
Assume that 0 = 1 in some ring R. Then, for every a ∈ R we have a = a · 1 =
a · 0 = 0, so R = {0}. In other words, asking that 0 ̸= 1 in R is the same as
asking R ̸= {0}.

Lemma 8.6. Let F be a field. Then (F \{0}, ·) is a group with identity element
1.

Proof. We know that the product is associative and that 1 is an identity for ·
(since F is a ring). Finally, every element in F \{0} has a multiplicative inverse
by definition of field.

Example 8.7. Z/nZ is a field if and only if n is a prime number.
We alredy know that Z/nZ is a ring, that the product is commutative, and that
0 ̸= 1 (since n ≥ 2). The fact that any non-zero element has an inverse is
statement 4. in proposition 1.5 (since n is prime).

We can use what we have seen to get a very short proof of Fermat’s little
theorem:

Theorem 8.8 (Fermat’s little theorem). Let p be a prime number and let a ∈ Z
with gcd(a, p) = 1. Then

ap−1 = 1 mod p.

Proof. We know that Z/pZ is a field, so (Z/pZ \ {0}, ·) is a group. It has p− 1
elements. Moreover a ̸= 0 since p does not divide a, so a belongs to this group.
By Corollary 6.12, we know that ap−1 = 1, in other words:

ap−1 = 1 mod p.
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