Problem sheet 9

1. (a) Show that $(\mathbb{Z},+)$ is cyclic, and that the only generators of $(\mathbb{Z},+)$ are 1 and -1 .
(b) Show that $(\mathbb{R} \backslash\{0\}, \cdot)$ is not cyclic, i.e., that there is no $a \in \mathbb{R} \backslash\{0\}$ such that $\mathbb{R} \backslash\{0\}=\langle a\rangle$. (Only do the case $a>0$; the other is similar, just a bit longer.)
(c) Show that $(\mathbb{Z} / n \mathbb{Z},+)$ is cyclic.
(d) Find all the generators of $(\mathbb{Z} / 3 \mathbb{Z},+)$ (i.e., all the elements $a \in$ $\mathbb{Z} / 3 \mathbb{Z}$ such that $\mathbb{Z} / 3 \mathbb{Z}=\langle a\rangle)$. Same question for $(\mathbb{Z} / 6 \mathbb{Z},+)$.
2. Let G be a group and let $a \in G$. Define

$$
C_{G}(a)=\{x \in G \mid x a=a x\} .
$$

Show that $C_{G}(a)$ is a subgroup of G.
3. Show that $H=\{\operatorname{id},(12)\}$ is a subgroup of S_{3}. Find $\sigma \in S_{3}$ such that $H \sigma \neq \sigma H$.
4. Let G be a group and let H be a subgroup of H. Let $a \in G$. Show that $a \in H$ is equivalent to $a H=H$. You can do it either directly from the definition of $a H$, or using the fact that $a H$ is the equivalence class of a for the equivalence relation \sim_{H}.
5. The objective of this exercise is to show that every subgroup of $(\mathbb{Z},+)$ is of the form $a \mathbb{Z}$ for some $a \in \mathbb{N} \cup\{0\}$. (It is an easy, but important, result.)
Let H be a subgroup of $(\mathbb{Z},+), H \neq\{0\}$. Define a to be the smallest positive element of H (why does it exist?).
(a) Show that $a \mathbb{Z} \subseteq H$.

Let $n \in H$, and let $n=a q+r$ be the division of n by a with remainder $r \in\{0, \ldots, a-1\}$.
(b) Show that $r \in H$.
(c) Deduce that $r=0$ and that $n \in a \mathbb{Z}$.
(d) Conclude.

