Problem sheet 9

- 1. (a) Show that $(\mathbb{Z}, +)$ is cyclic, and that the only generators of $(\mathbb{Z}, +)$ are 1 and -1.
 - (b) Show that $(\mathbb{R} \setminus \{0\}, \cdot)$ is not cyclic, i.e., that there is no $a \in \mathbb{R} \setminus \{0\}$ such that $\mathbb{R} \setminus \{0\} = \langle a \rangle$. (Only do the case a > 0; the other is similar, just a bit longer.)
 - (c) Show that $(\mathbb{Z}/n\mathbb{Z}, +)$ is cyclic.
 - (d) Find all the generators of $(\mathbb{Z}/3\mathbb{Z}, +)$ (i.e., all the elements $a \in \mathbb{Z}/3\mathbb{Z}$ such that $\mathbb{Z}/3\mathbb{Z} = \langle a \rangle$). Same question for $(\mathbb{Z}/6\mathbb{Z}, +)$.
- 2. Let G be a group and let $a \in G$. Define

$$C_G(a) = \{ x \in G \mid xa = ax \}.$$

Show that $C_G(a)$ is a subgroup of G.

- 3. Show that $H = \{ id, (1 \ 2) \}$ is a subgroup of S_3 . Find $\sigma \in S_3$ such that $H\sigma \neq \sigma H$.
- 4. Let G be a group and let H be a subgroup of H. Let $a \in G$. Show that $a \in H$ is equivalent to aH = H. You can do it either directly from the definition of aH, or using the fact that aH is the equivalence class of a for the equivalence relation \sim_H .
- 5. The objective of this exercise is to show that every subgroup of $(\mathbb{Z}, +)$ is of the form $a\mathbb{Z}$ for some $a \in \mathbb{N} \cup \{0\}$. (It is an easy, but important, result.)

Let *H* be a subgroup of $(\mathbb{Z}, +)$, $H \neq \{0\}$. Define *a* to be the smallest positive element of *H* (why does it exist?).

(a) Show that $a\mathbb{Z} \subseteq H$.

Let $n \in H$, and let n = aq + r be the division of n by a with remainder $r \in \{0, \ldots, a-1\}$.

- (b) Show that $r \in H$.
- (c) Deduce that r = 0 and that $n \in a\mathbb{Z}$.
- (d) Conclude.