Problem sheet 6

1. Determine the following element of $S_{7}:\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 3 & 7 & 4 & 6 & 1 & 2\end{array}\right)^{-1}(372)$, calculate its order, and determine if it is odd or even.
2. Let \sim be the relation on \mathbb{R}^{2} defined by $(x, y) \sim(a, b)$ if and only if there is $\alpha \in \mathbb{R}^{>0}$ such that $\alpha \cdot(x, y)=(a, b)$ (recall that $\left.\alpha \cdot(x, y)=(\alpha x, \alpha y)\right)$. Show that \sim is an equivalence relation on \mathbb{R}^{2} and represent graphically all its equivalence classes.
3. Let G be a group.
(a) Suppose that for every $a, b, c \in G$ we have

$$
a c=c b \text { implies } a=b .
$$

Show that G is Abelian i.e., for every $x, y \in G x y=y x$.
(b) Show that if every element of G has order at most 2 (i.e., $x^{2}=e$ for every $x \in G$), then G is Abelian. Hint: Consider the element $x y$ and use that $x^{2}=e, y^{2}=e$.
4. Consider an equilateral triangle with vertices A, B, C. Determine all symmetries of the triangle and write down the multiplication table of the operation o between these isometries (the composition of maps). We saw (or will shortly see) in class that this set, together with this operation, is a group denoted D_{6}, called the dihedral group of order 6 .
5. We saw in exercise sheet 5 that if $f: A \rightarrow B$ is a function, then the relation on A defined by $x \sim y$ iff $f(x)=f(y)$ is an equivalence relation. This exercise shows that every equivalence relation can be obtained in this way.
Let \sim be an equivalence relation on a set S. Let $\left\{A_{i}\right\}_{i \in I}$ be the collection of all different equivalence classes of $\sim\left(\right.$ so $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$). Observe that every element of S belongs to an equivalence class (indeed $x \in[x]$, and $[x]$ is one of the $\left.A_{i}\right)$. Define the map $f: S \rightarrow I, f(x)=$ the unique i such that x belongs to A_{i}.

Show that $x \sim y$ if and only if $f(x)=f(y)$.

