Problem sheet 4

1. Express each of the following elements of S_{9} in the usual form as a table with 2 rows.
(a) $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 6 & 9 & 8 & 5\end{array}\right)^{-1}$.
(b) $(12357)(2476)$.
2. Let $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \in S_{5}$. Determine all the permutations σ^{n} for $n \in \mathbb{Z}$.
3. Let G be a group and let $g \in G$ be such that $|g|=k$ (i.e. $g^{k}=e$ and $g^{t} \neq e$ for every $1 \leq t \leq k-1$). Let now $m \in \mathbb{N}$ be such that $g^{m}=\mathrm{id}$.
(a) Recall why there are two integers q and r such that $m=q k+r$, with $0 \leq r \leq k-1$.
(b) Show that $g^{k q}=\mathrm{id}$ and deduce that $g^{r}=\mathrm{id}$.
(c) Deduce that $r=0$ (hint: what is the definition of $k=|g|$?).
(d) Deduce the following very important result (and remember it!!):

If g is an element of a group such that g has finite order, and if m is an integer such that $g^{m}=e$, then m is a multiple of the order of g.

4. This exercise is written in such a way that if you cannot do a question, you can always skip it and simply use its result to answer the following ones. In general, the result obtained at each question is useful in the following questions.
Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$ where $\sigma_{1}, \ldots, \sigma_{k}$ are disjoint cycles. The objective of this exercise is to show that

$$
|\sigma|=\operatorname{lcm}\left(\left|\sigma_{1}\right|, \ldots,\left|\sigma_{k}\right|\right) .
$$

Recall that lcm means "least common multiple". For instance $\operatorname{lcm}(4,6)=12$.
Let $t=|\sigma|, t_{i}=\left|\sigma_{i}\right|$ and $N=\operatorname{lcm}\left(\left|\sigma_{1}\right|, \ldots,\left|\sigma_{k}\right|\right)$.
(a) Show that $\sigma^{N}=$ id. Hint: Exercise 4 in problem sheet 2 can be useful.

Therefore $|\sigma| \leq N$ by definition of the order of an element.
(b) Show that if $\sigma_{1}^{r_{1}}=\sigma_{2}^{r_{2}} \cdots \sigma_{k}^{r_{k}}$ for some $r_{1}, \ldots, r_{k} \in \mathbb{Z}$ then $\sigma_{1}^{r_{1}}=\mathrm{id}$. Hint: Show that $\sigma_{1}^{r_{1}}(x)=x$ for every $x \in\{1, \ldots, n\}$ by looking at what elements are "moved" by the different σ_{i}.
(c) We know by definition of t that $\sigma^{t}=\mathrm{id}$. Show that $\sigma_{1}^{t}=\mathrm{id}$. Observe that similarly $\sigma_{2}^{t}=\mathrm{id}, \ldots, \sigma_{k}^{t}=\mathrm{id}$.
(d) Show that t is a multiple of t_{1}, \ldots, t_{k}. Hint: Use exercise 3 .
(e) Deduce the result.

