Problem sheet 4

- 1. Express each of the following elements of S_9 in the usual form as a table with 2 rows.
 - (a) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 6 & 9 & 8 & 5 \end{pmatrix}^{-1}$. (b) $(1 \ 2 \ 3 \ 5 \ 7)(2 \ 4 \ 7 \ 6)$.
- 2. Let $\sigma = (1 \ 2 \ 3 \ 4) \in S_5$. Determine all the permutations σ^n for $n \in \mathbb{Z}$.
- 3. Let G be a group and let $g \in G$ be such that |g| = k (i.e. $g^k = e$ and $g^t \neq e$ for every $1 \leq t \leq k-1$). Let now $m \in \mathbb{N}$ be such that $g^m = \text{id}$.
 - (a) Recall why there are two integers q and r such that m = qk + r, with $0 \le r \le k 1$.
 - (b) Show that $g^{kq} = \text{id}$ and deduce that $g^r = \text{id}$.
 - (c) Deduce that r = 0 (hint: what is the definition of k = |g|?).
 - (d) Deduce the following very important result (and remember it!!):

If g is an element of a group such that g has finite order, and if m is an integer such that $g^m = e$, then m is a multiple of the order of g.

4. This exercise is written in such a way that if you cannot do a question, you can always skip it and simply use its result to answer the following ones. In general, the result obtained at each question is useful in the following questions.

Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_k$ where $\sigma_1, \ldots, \sigma_k$ are disjoint cycles. The objective of this exercise is to show that

$$|\sigma| = \operatorname{lcm}(|\sigma_1|, \ldots, |\sigma_k|).$$

Recall that lcm means "least common multiple". For instance lcm(4, 6) = 12.

Let $t = |\sigma|, t_i = |\sigma_i|$ and $N = \operatorname{lcm}(|\sigma_1|, \dots, |\sigma_k|)$.

(a) Show that $\sigma^N = \text{id.}$ Hint: Exercise 4 in problem sheet 2 can be useful.

Therefore $|\sigma| \leq N$ by definition of the order of an element.

- (b) Show that if $\sigma_1^{r_1} = \sigma_2^{r_2} \cdots \sigma_k^{r_k}$ for some $r_1, \ldots, r_k \in \mathbb{Z}$ then $\sigma_1^{r_1} = \text{id.}$ Hint: Show that $\sigma_1^{r_1}(x) = x$ for every $x \in \{1, \ldots, n\}$ by looking at what elements are "moved" by the different σ_i .
- (c) We know by definition of t that $\sigma^t = id$. Show that $\sigma_1^t = id$. Observe that similarly $\sigma_2^t = id, \ldots, \sigma_k^t = id$.
- (d) Show that t is a multiple of t_1, \ldots, t_k . Hint: Use exercise 3.
- (e) Deduce the result.