Problem sheet 3

1. Let G be a group and let $a \in G$.
(a) Show that if $a^{2}=e$ then $a^{-2}=e$.
(b) More generally, show that if $k \in \mathbb{N}$ and $a^{k}=e$, then $a^{-k}=e$.
(c) Deduce that $|a|=\left|a^{-1}\right|$, (Recall that $|a|$ denotes the order of a.)
2. Which of the following are groups, and why?

$$
(\{-1,1\}, \cdot) \text {, where } \cdot \text { is the usual product of integers. }
$$

$$
(\mathbb{N} \cup\{0\},+) .
$$

3. Write down all the elements of S_{3} in the form

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
a & b & c
\end{array}\right) .
$$

4. Consider the following elements of S_{4} :

$$
\alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right) \text { and } \beta=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right) .
$$

(a) Compute $\alpha \beta$ and $\beta \alpha$.
(b) Find the smallest integer k such that $\alpha^{k}=\mathrm{Id}$.
(c) Show that $\alpha^{k-1}=\alpha^{-1}$.
(d) Determine β^{-1}.
5. We saw on an example that the product of two permutations in S_{4} is in general not commutative.
(a) Describe all the elements of S_{2} and show that the product of elements of S_{2} is always commutative (i.e. $\sigma \gamma=\gamma \sigma$ for every $\left.\sigma, \gamma \in S_{2}\right)$.
(b) Show that the product of elements in S_{n} is in general not commutative (i.e. that there are least 2 elements α, β of S_{n} such that $\alpha \beta \neq \beta \alpha$) whenever $n \geq 3$.

