Problem sheet 2

- 1. (a) Write the multiplication table of $\mathbb{Z}/3\mathbb{Z}$. Is $(\mathbb{Z}/3Z \setminus \{0\}, \cdot)$ a group (where \cdot denotes the product in $\mathbb{Z}/3\mathbb{Z}$)?
 - (b) Is $(\mathbb{Z}/4Z \setminus \{0\}, \cdot)$ a group?
- 2. Let G be a group, and let $a \in G$. Show that $(a^{-1})^2 = (a^2)^{-1}$. Notation: If $b \in G$, by b^k we mean $b \cdot b \cdot \cdots \cdot b$ (k times). Observe that the same reasoning will give $(a^{-1})^k = (a^k)^{-1}$.
- 3. Let G be a group.
 - (a) Let $a, b, x \in G$. Solve axb = c for x (in terms of a, b and c).
 - (b) Let $x, y \in G$ and assume that $xy = yx^2$. Write xyxy in the form y^ix^j for some integers i and j.
- 4. (This exercise uses Definition 2.12 from the course notes, so you may need to read a little bit more of them.) Let G be a group and let $g \in G$. Let k = |g|, the order of g. Show that $g^{mk} = e$ for every $m \in \mathbb{N}$.

So: If you raise an element to the power of a multiple of its order, you get e. The converse it true (if $g^k = e$ then k is a multiple of the order of g) and will be done in a future exercise sheet.