Problem sheet 2

1. (a) Write the multiplication table of $\mathbb{Z} / 3 \mathbb{Z}$. Is $(\mathbb{Z} / 3 Z \backslash\{0\}$, .) a group (where • denotes the product in $\mathbb{Z} / 3 \mathbb{Z}$)?
(b) Is $(\mathbb{Z} / 4 Z \backslash\{0\}, \cdot)$ a group?
2. Let G be a group, and let $a \in G$. Show that $\left(a^{-1}\right)^{2}=\left(a^{2}\right)^{-1}$. Notation: If $b \in G$, by b^{k} we mean $b \cdot b \cdots \cdots b$ (k times).
Observe that the same reasoning will give $\left(a^{-1}\right)^{k}=\left(a^{k}\right)^{-1}$.
3. Let G be a group.
(a) Let $a, b, x \in G$. Solve $a x b=c$ for x (in terms of a, b and c).
(b) Let $x, y \in G$ and assume that $x y=y x^{2}$. Write $x y x y$ in the form $y^{i} x^{j}$ for some integers i and j.
4. (This exercise uses Definition 2.12 from the course notes, so you may need to read a little bit more of them.) Let G be a group and let $g \in G$. Let $k=|g|$, the order of g. Show that $g^{m k}=e$ for every $m \in \mathbb{N}$.
So: If you raise an element to the power of a multiple of its order, you get e. The converse it true (if $g^{k}=e$ then k is a multiple of the order of g) and will be done in a future exercise sheet.
