Problem sheet 11

1. Let G be a finite group with $|G|=p$ with p prime. List all the subgroups of G.
2. Let A_{n} be the set of all even permutations of S_{n}. Show that A_{n} is a subgroup of S_{n} (we consider that the identity is an even permutation).
3. Let H and K be subgroups of a group G, such that $\operatorname{gcd}(|H|,|K|)=1$. Show that $H \cap K=\{e\}$. Hint: If $x \in H \cap K$, what can you say about the order of x ?
4. Let $K=\left\{\mathrm{id},\left(\begin{array}{ll}1 & 2\end{array} 3\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\} \subseteq S_{3}$.
(a) Show that K is a subgroup of S_{3}. Can you say without computation if K is cyclic?
(b) How many different left cosets of K are there in S_{3} ? For each of them, give a full list of its elements
(c) Give a subgroup of S_{3} that has exactly 3 different left cosets.
5. We consider the two groups $(\mathbb{R},+)$ and $\left(\mathbb{R}^{>0}, \cdot\right)$ where $\mathbb{R}^{>0}=\{x \in \mathbb{R} \mid$ $x>0\}$ and,$+ \cdot$ are the usual operations of sum and product. (You do not have to check that they are groups.)
Show that the map exp : $\mathbb{R} \rightarrow \mathbb{R}^{>0}, \exp (x)=e^{x}$ (the usual exponential function) is an isomorphism.

It is very convenient to consider a weakening of the definition of isomorphism, where you drop the "bijective" condition:

Let (G, \cdot) and $(H, *)$ be two groups. A map $f: G \rightarrow H$ is called a morphism (of groups) if $f(a \cdot b)=f(a) * f(b)$ for every $a, b \in G$. So an isomorphism is a bijective morphism.
6. (a) Show that $f\left(e_{G}\right)=e_{H}$ and, for every $a \in G, f\left(a^{-1}\right)=f(a)^{-1}$.
(b) Show that the set called $\operatorname{ker} f$ (the kernel of f), defined by

$$
\operatorname{ker} f=\left\{x \in G \mid f(x)=e_{H}\right\}
$$

is a subgroup of G.

