Problem sheet 10

1. (a) We consider the element $\sigma=\left(\begin{array}{ll}1 & 4\end{array}\right)$ in S_{5}. Determine $\langle\sigma\rangle$, the subgroup generated by σ.
(b) Let H be the subgroup of S_{3} generated by (12) and (123).
i. Show that 2 and 3 divide $|H|$. (There is a very simple argument involving what we saw at the end of Chapter 6.)
ii. Deduce that $H=S_{3}$ (no heavy computations involved).

Remark: The subgroup of S_{3} generated by (12) and (123) is the set of all elements of S_{3} that you can obtain by using these two elements and their inverses, and computing all possible products. So you could check "by hand" that this subgroup is S_{3} itself, but it would require doing a lot of computations.
2. Let G be an infinite cyclic group, and let a be a generator of G, in other words $G=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ and $a^{n} \neq a^{m}$ if $n \neq m$.
(a) Find a justification for the statement $a^{n} \neq a^{m}$ if $n \neq m$ (with $n, m \in \mathbb{Z}$) made above.
(b) Show that a and a^{-1} are the only generators of G.
3. Let G be a group and let $x, y \in G$.
(a) Show that, for $k \in \mathbb{N}, x^{k}=e$ if and only if $\left(y x y^{-1}\right)^{k}=e$.
(b) Deduce that x and $y x y^{-1}$ have the same order.
(c) Deduce that, for $a, b \in G, a b$ and $b a$ have the same order.
4. (Very easy) This exercise shows that if two elements in a group have finite order, their product may not have finite order.
Let $G L_{2}(\mathbb{R})$ be the group of invertible 2×2 matrices with coefficients in \mathbb{R} (the operation is the product of matrices).
(a) Explain why the matrix $I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the identity element of this group.

Let $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)$.
(a) Check that A and B have finite order (more precisely $A^{4}=I_{2}$ and $B^{6}=I_{2}$).
(b) Show that $A B$ does not have finite order i.e., $(A B)^{n} \neq I_{2}$ for every $n \in \mathbb{N}$.

