Problem sheet 9 - Solution

- 1. (a) Write J for J(R). We prove both inclusions.
 - Let $x + I \in J(R/I)$. Then, if $z + I \in R/I$, then (1+I) (z+I)(x+I) is leftinvertible in R/I, i.e. there is b+I such that (b+I)[(1+I) - (z+I)(x+I)] =1 + I, i.e. b(1 - zx) + I = 1 + I, i.e. b(1 - zx) = 1 + i for some $i \in I$. But 1 + i is left-invertible in R (since $I \subseteq J(R)$), so there is $a \in R$ such that a(1+i) = 1, so ab(1 - zx) = 1, which proves that 1 - zx is left-invertible. Since it happens for every $z \in R$, we have $x \in J$, so x + I = J/I. Let $x \in J$, so that $x + I \in J/I$. We show that $x + I \in J(R/I)$ by showing that (1+I) - (z+I)(x+I) is left invertible for every $z \in R$. Let $z \in R$. Then
 - that (1+I) (z+I)(x+I) is left invertible, for every $z \in R$. Let $z \in R$. Then 1 zx is left invertible: There is $a \in R$ such that a(1 zx) = 1. Therefore a(1 zx) + I = 1 + I, i.e., (a + I)((1 + I) (z + I)(x + I)) = 1 + I, done.
 - (b) Simply use the description of the elements of the Jacobson radical in terms of left-invertibility and the fact that the sums and products of elements in $\prod_{i \in I} R_i$ is done coordinate by coordinate.
 - (c) We use again the characterization in terms of invertibility. Let $x \in J(R)$. We show that 1 + uf(x) is left invertible for every $u \in S$. Since f is surjective $u = f(\alpha)$, so $1 + uf(x) = f(1 + \alpha x)$. Since $x \in J(R)$, $1 + \alpha x \in U(R)$, so $f(1 + \alpha x) \in U(S)$ (easy to check, do it).
- 2. I write again J for J(R). There is $z \in R$ such that $(a+J)(z+J) = (z+J)(a+J) = 1+J \in R/J$. So az = 1+i for some $i \in J$. By the properties of J, 1+i is invertible in R, so $az(1+i)^{-1} = 1$: a has a right inverse. Similarly a has a left inverse.
- 3. (a) I is clearly closed by sums, and contains 0. Let $a = (a_n)_{n \in \mathbb{N}} \in I$. Say that $n_1 < \ldots < n_k$ are the coordinates for which $a_i \neq 0$. We have $a_{n_i} = 2.b_{n_i}$ for $i = 1, \ldots, k$ (because $a_{n_i} \in 2.R_{n_i}$. Let $r = (r_n)_{n \in \mathbb{N}} \in R$. Then $ra = (ra_n)_{n \in \mathbb{N}} \in I$, because the only nonzero coordinates are n_1, \ldots, n_k and $r_{n_i}a_{n_i} = 2r_{n_i}b_{n_i}$ for $i = 1, \ldots, k$. We have $ar = ra \in I$. So I is an ideal.
 - (b) Let $a = (a_n)_{n \in \mathbb{N}} \in I$ with notations as above. If $i \in \{1, \ldots, k\}$ we have $a_{n_i} = 2.b_{n_i} \in R_{n_i}$ and then $a_{n_i}^{n_i} = 0$. Since n_k is the greatest of the n_i we have $a_{n_i}^{n_k} = 0$ for every $i = 1, \ldots, k$. This gives $a^{n_k} = 0$. We remark that the exponent n_k depends on a.
 - (c) Suppose $I^n = \{0\}$ for some integer n. This implies $a^n = 0$ for every $a \in I$. But if $a = (0, \ldots, 0, 2, 0, \ldots)$, where the 2 is at the coordinate n + 1 (*i.e.* belongs to $R_{n+1} = \mathbb{Z}/2^{n+1}\mathbb{Z}$), we have $a^n = (0, \ldots, 0, 2^n, 0, \ldots) \neq 0$.

We can deduce that R is not Artinian, because in an Artinian ring a nil ideals is nilpotent. Define $I_n = \prod_{i=1}^n R_i \times \prod_{i \ge n+1} \{0\}$. The I_n form a strictly ascending chain of ideals of R. Define $J_n = \prod_{i=1}^n \{0\} \times \prod_{i \ge n+1} R_i$. The J_n form a strictly descending chain of ideals of R.

- 4. (a) Clear.
 - (b) Same as above, just do it coordinate by coordinate.
 - (c) If f is such a function, take for g the function equal to $f(x)^{-1}$ if $f(x) \neq 0$ and 0 is f(x) = 0. Then f = fgf.
 - (d) $(ba)^2 = baba = ba$. Let Ra be a principal left ideal. We show that Ra = R(ba). Obviously $R(ba) \subseteq Ra$. Let now $ra \in Ra$. Then $ra = ra(ba) \in R(ba)$.