Problem sheet 9 - Solution

1. (a) Write $J$ for $J(R)$. We prove both inclusions.

Let $x+I \in J(R / I)$. Then, if $z+I \in R / I$, then $(1+I)-(z+I)(x+I)$ is leftinvertible in $R / I$, i.e. there is $b+I$ such that $(b+I)[(1+I)-(z+I)(x+I)]=$ $1+I$, i.e. $b(1-z x)+I=1+I$, i.e. $b(1-z x)=1+i$ for some $i \in I$. But $1+i$ is left-invertible in $R$ (since $I \subseteq J(R)$ ), so there is $a \in R$ such that $a(1+i)=1$, so $a b(1-z x)=1$, which proves that $1-z x$ is left-invertible. Since it happens for every $z \in R$, we have $x \in J$, so $x+I=J / I$.
Let $x \in J$, so that $x+I \in J / I$. We show that $x+I \in J(R / I)$ by showing that $(1+I)-(z+I)(x+I)$ is left invertible, for every $z \in R$. Let $z \in R$. Then $1-z x$ is left invertible: There is $a \in R$ such that $a(1-z x)=1$. Therefore $a(1-z x)+I=1+I$, i.e., $(a+I)((1+I)-(z+I)(x+I))=1+I$, done.
(b) Simply use the description of the elements of the Jacobson radical in terms of left-invertibility and the fact that the sums and products of elements in $\prod_{i \in I} R_{i}$ is done coordinate by coordinate.
(c) We use again the characterization in terms of invertibility. Let $x \in J(R)$. We show that $1+u f(x)$ is left invertible for every $u \in S$. Since $f$ is surjective $u=f(\alpha)$, so $1+u f(x)=f(1+\alpha x)$. Since $x \in J(R), 1+\alpha x \in U(R)$, so $f(1+\alpha x) \in U(S)$ (easy to check, do it).
2. I write again $J$ for $J(R)$. There is $z \in R$ such that $(a+J)(z+J)=(z+J)(a+J)=$ $1+J \in R / J$. So $a z=1+i$ for some $i \in J$. By the properties of $J, 1+i$ is invertible in $R$, so $a z(1+i)^{-1}=1$ : $a$ has a right inverse. Similarly $a$ has a left inverse.
3. (a) $I$ is clearly closed by sums, and contains 0 . Let $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in I$. Say that $n_{1}<\ldots<n_{k}$ are the coordinates for which $a_{i} \neq 0$. We have $a_{n_{i}}=$ $2 . b_{n_{i}}$ for $i=1, \ldots, k$ (because $a_{n_{i}} \in 2 . R_{n_{i}}$. Let $r=\left(r_{n}\right)_{n \in \mathbb{N}} \in R$. Then $r a=\left(r a_{n}\right)_{n \in \mathbb{N}} \in I$, because the only nonzero coordinates are $n_{1}, \ldots, n_{k}$ and $r_{n_{i}} a_{n_{i}}=2 r_{n_{i}} b_{n_{i}}$ for $i=1, \ldots, k$. We have $a r=r a \in I$.
So $I$ is an ideal.
(b) Let $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in I$ with notations as above. If $i \in\{1, \ldots, k\}$ we have $a_{n_{i}}=2 . b_{n_{i}} \in R_{n_{i}}$ and then $a_{n_{i}}^{n_{i}}=0$. Since $n_{k}$ is the greatest of the $n_{i}$ we have $a_{n_{i}}^{n_{k}}=0$ for every $i=1, \ldots, k$. This gives $a^{n_{k}}=0$.
We remark that the exponent $n_{k}$ depends on $a$.
(c) Suppose $I^{n}=\{0\}$ for some integer $n$. This implies $a^{n}=0$ for every $a \in I$. But if $a=(0, \ldots, 0,2,0, \ldots)$, where the 2 is at the coordinate $n+1$ (i.e. belongs to $\left.R_{n+1}=\mathbb{Z} / 2^{n+1} \mathbb{Z}\right)$, we have $a^{n}=\left(0, \ldots, 0,2^{n}, 0, \ldots\right) \neq 0$.

We can deduce that $R$ is not Artinian, because in an Artinian ring a nil ideals is nilpotent.
Define $I_{n}=\prod_{i=1}^{n} R_{i} \times \prod_{i \geq n+1}\{0\}$. The $I_{n}$ form a strictly ascending chain of ideals of $R$.
Define $J_{n}=\prod_{i=1}^{n}\{0\} \times \prod_{i \geq n+1} R_{i}$. The $J_{n}$ form a strictly descending chain of ideals of $R$.
4. (a) Clear.
(b) Same as above, just do it coordinate by coordinate.
(c) If $f$ is such a function, take for $g$ the function equal to $f(x)^{-1}$ if $f(x) \neq 0$ and 0 is $f(x)=0$. Then $f=f g f$.
(d) $(b a)^{2}=b a b a=b a$. Let $R a$ be a principal left ideal. We show that $R a=$ $R(b a)$. Obviously $R(b a) \subseteq R a$. Let now $r a \in R a$. Then $r a=r a(b a) \in R(b a)$.

