RING THEORY

Problem sheet 8 - Solution

1. (a) Use the first isomorphism theorem, together with the morphism of *R*-modules

$$f: N \oplus P \to P, \quad f(n+p) = p,$$

where $n \in N$ and $p \in P$.

- (b) " \Rightarrow " Let N be a submodule of M. Take $a_1 \in N$. Then $\text{Span}(a_1) \neq N$, take $a_2 \in N \setminus \text{Span}(a_1)$. Then $\text{Span}(a_1, a_2) \neq N$, etc. We get in this way an infinite strictly increasing chain of submodules of N (hence of M), contradition. " \Leftarrow " Let $N_0 \subseteq N_1 \subseteq \cdots$ be an increasing chain of submodules of M. Then $\bigcup_{i\geq 0} N_i = \text{Span}(m_1, \ldots, m_k)$ for some $m_1, \ldots, m_k \in M$ and since there is $j \in \mathbb{N}$ such that $m_1, \ldots, m_k \in N_j$ we get $\bigcup_{i\geq 0} N_i = N_j$, and so $N_j = N_{j+1} = \cdots$.
- 2. (a) Let {e_i}_{i∈I} be a basis of M, and fix i₀ ∈ I, m ∈ M \ {0}. Define f ∈ End_D M by f(e_{i0}) = m and f(e_i) = 0 if i ≠ i₀. We have dim_D Im(f) = 1, so f ∈ I, which is then nonzero. Let f ∈ I and g ∈ End_D M. Then Im(f ∘ g) = f(g(M)) ⊆ f(M) which has finite dimension, and Im(g ∘ f) = g(f(M)), which has finite dimension since dim_D Im f is finite. This proves f ∘ g, g ∘ f ∈ I. If f, g ∈ I, then Im(f + g) = (f + g)(M) ⊆ f(M) + g(M) which has finite dimension since dim f(M) and dim g(M) are finite. I is then a nonzero ideal of End_D M. I is proper because Id ∉ I.
 - (b) Let $\{e_i\}_{i\in\mathbb{N}}$ be linearly independent subset of M, and let N_k be the submodule generated by e_1, \dots, e_k . Define $L_k = \{f \in \operatorname{End}_D M \mid f(N_k) = \{0\}\}$. L_k is a left ideal of $\operatorname{End}_D M$, and since the N_k form a strictly ascending chain, the L_k form a strictly descending chain. This proves that $\operatorname{End}_D M$ does not satisfy the DCC on left ideals.

We can also show that $\operatorname{End}_D M$ does not satisfy the ACC on left ideals (i.e., is not Noetherian):

Let M_k be the submodule generated by $\{u_i\}_{i\geq k}$, and define

$$J_k = \{ f \in \operatorname{End}_D M \mid f(M_k) = \{ 0 \} \}.$$

 J_k is a left ideal, and the J_k form a strictly ascending chain.

3. (a) Let $x \in N_2 \setminus N_1$. Then $f(x) \in f(N_2) \setminus f(N_1)$. Indeed: if $f(x) \in f(N_1)$, then f(x) = f(y) for some $y \in N_1$, so $x = y \in N_1$, contradiction.

(b) Assume that f is not surjective, i.e., $f(M) \subsetneqq M$. By (a) we get an infinite strictly descending chain of submodules of M:

$$M \supseteq f(M) \supseteq f^2(M) \supseteq \cdots$$

contradiction.

4. The sets I_n are clearly left ideals, and form an infinite strictly decreasing chain, so R is not Artinian, contradiction.