Problem sheet 7 - Solution

1. (a) Because R has no zero divisors.
(b) $R i_{0}^{2}$ is a left ideal, and is included in I. It is non-zero since $i_{0}^{2} \neq 0$. So $R i_{0}^{2}=I$.
(c) Since $i_{0} \in I=R i_{0}^{2}$, then $i_{0}=r i_{0}^{2}$ for some $r \in R$. Then $\left(1-r i_{0}\right) i_{0}=0$. Since R has no zero divisors and $i_{0} \neq 0$ we get $1-r i_{0}=0$, so $r i_{0}=1$. But $r i_{0} \in I$, so $I_{0}=R$.
(d) $R a$ is included in I is is non-zero. So $R a=I=R$. In particular there is $r \in R$ such that $r a=1$, so a is left invertible.
If a is also right invertible, it will be invertible and its inverse will be r. So we want to show that $a r=1$. We obtain it using R has no zero divisors. If we want to use this property to show that $a r=1$, we need to rephrase it as "something $=0$ ". It is rather easy, it is equivalent to $a r-1=0$. Using now that R has no zero divisors, it is equivalent to $(a r-1) a=0$. Developping, this is now equivalent to $\operatorname{ara}-a=0$, which is true since $r a=1$.
2. ' \Rightarrow " Clearly N is Artinian since it is a submodule of M. Assume now that we have an infinite strictly decreasing chain of submodules of M / N :

$$
P_{1} \supsetneqq P_{2} \supsetneqq P_{3} \supsetneqq \cdots
$$

To get a contradiction, we need to "bring" things back to M. One way to do this is to use the map $\pi: M \rightarrow M / N, \pi(m)=m+N$. We get a sequence of submodules of M :

$$
\pi^{-1}\left(P_{1}\right) \supseteq \pi^{-1}\left(P_{2}\right) \supseteq \pi^{-1}\left(P_{3}\right) \cdots
$$

Since π is surjective these inclusions are proper (for the first one: take $x+m \in$ $P_{1} \backslash P_{2}$. Then $x \in \pi^{-1}\left(P_{1}\right)$ but $x \notin \pi^{-1}\left(P_{2}\right)$. This is impossible since M is Artinian $" \Leftarrow "$ Let $M_{1} \supseteq M_{2} \supseteq \cdots$ be an descending chain of submodules of M. Let $\pi: M \rightarrow M / N$ be the canonical projection. Since M / N and N are Noetherian, there is $k \in \mathbb{N}$ such that $\pi\left(M_{k}\right)=\pi\left(M_{r}\right)$ and $N \cap M_{k}=N \cap M_{r}$, for every $r \geq k$. Let $r \geq k$. We show that $M_{k}=M_{r}$. By hypothesis we know that $M_{k} \supseteq M_{r}$, so we just have to show the other inclusion. Let $x \in M_{k}$. Since $\pi\left(M_{k}\right)=\pi\left(M_{r}\right)$, there is $y \in M_{r}$ such that $y+N=x+N$, i.e. there is $n \in N$ such that $x=y+n$. In this case $n=x-y \in M_{k} \cap N$. Since $M_{r} \cap N=M_{k} \cap N$ we obtain that $n \in M_{r}$, from which follows $x=y+r \in M_{r}$.
3. Let $M=\bigoplus_{i \in I} M_{i}$ with all M_{i} semisimple. Observe first that M is of finite length if and only if I is finite.
" \Rightarrow " Let $a_{i} \in M_{i} \backslash\{0\}$ for every $i \in I$ (finite). Since M_{i} is simple, M_{i} is generated by a_{i} and so M is generated by $\left\{a_{i}\right\}_{i \in I}$.
" \Leftarrow " Assume that M is generated by $b_{1}, \ldots, b_{k} \in \bigoplus_{i \in I} M_{i}$. Since each b_{j} is the sum of finite number of elements of the M_{i}, there is a finite subset J of I such that $b_{1}, \ldots, b_{k} \in \bigoplus_{j \in J} M_{j}$. So $M=\operatorname{Span}\left(b_{1}, \ldots, b_{k}\right) \subseteq \bigoplus_{j \in J} M_{j}$, and therefore $M=\bigoplus_{j \in J} M_{j}$.
4. (a) U is a submodule of M semisimple, so U is semisimple, and therefore any submodule of U is a direct summand in U. The result follows since $U \cap V$ is a submodule of U. Same reasonning for the part about V.
(b) We have two things to show:
(i) $M=N+(U \cap V)+P$.
(ii) $N \cap((U \cap V)+P)=\{0\},(U \cap V) \cap(N+P)=\{0\}$ and $P \cap(N+(U \cap V))=$ $\{0\}$.

We start with (i). Let $m \in M$. Since $M=U+V$ there are $a \in U$ and $b \in V$ such that $m=a+b$. Since $U=(U \cap V)+P$ and $V=(U \cap V)+N$ we have $a=x+p$ and $b=y+n$ where $x, y \in U \cap V, p \in P$ and $n \in N$. Therefore $m=(x+y)+n+p$ with $x+y \in U \cap V, n \in N$ and $p \in P$.
For (ii) I only show the first one, the others are similar. Let $n \in N \cap((U \cap$ $V)+P)$, so $n \in N$ and $n=x+p$ with $x \in U \cap V$ and $p \in P \subseteq V$. Since $N \subseteq U$ we have $p=n-x \in U$, and thus $P \in U \cap V$. So $n \in N \cap(U \cap V)=\{0\}$.
(c) Let $r=\ell\left(W_{1}\right)$ and $s=\ell\left(W_{2}\right)$. Let

$$
\{0\}=A_{0} \subsetneq A_{1} \subsetneq \cdots \subsetneq A_{r}=W_{1}
$$

and

$$
\{0\}=B_{0} \subsetneq B_{1} \subsetneq \cdots \subsetneq B_{s}=W_{2}
$$

be composition series for W_{1} and W_{2}. Then

$$
\{0\}=A_{0} \subsetneq \cdots \subsetneq A_{r}=W_{1} \subsetneq W_{1}+B_{1} \subsetneq \cdots \subsetneq W_{1}+B_{s}=W_{1}+W_{2}
$$

is a composition series for $W_{1}+W_{2}$, proving the result.
(d) Since $M=N \oplus(U \cap V) \oplus N$ we have $\ell(M)=\ell(N)+\ell(U \cap V)+\ell(P)$. Now $\ell(U)=\ell(U \cap V)+\ell(N)$ and $\ell(V)=\ell(U \cap V)+\ell(P)$ to get the result.

