Problem sheet 6 - Solution

1. (a) " \Leftarrow " If W is a subspace of V, then either $\operatorname{dim} W=0$, in which case $W=\{0\}$, or $\operatorname{dim} W=1$, in which case $W=V$.
" \Rightarrow " If the only subspaces of V are $\{0\}$ and V, then V must have dimension 1 (it is easy to construct more subspaces if the dimension is greater than 1).
(b) (i) \Rightarrow (ii): Let $\left\{u_{1}, \ldots, u_{n}\right\}$ be a basis of V, and take $V_{i}=\operatorname{Span}\left\{u_{1}, \ldots, u_{i}\right\}$. (ii) \Rightarrow (i): By the observation above: $\operatorname{dim} V_{i+1} / V_{i}=1$, i.e. $\operatorname{dim} V_{i+1}=$ $\operatorname{dim} V_{i}+1$. It follows that $\operatorname{dim} V=n$.
2. Let $\pi: M \rightarrow M / N, \pi(m)=m+N$.
(a) $\Rightarrow(\mathrm{b})$: Since N is a proper submodule of M, we have $M / N \neq\{0\}$. Let P be a submodule of M / N. Then $P=\pi(L)$ for some submodule L of M such that $N \subseteq L$ (proposition 2.13). By hypothesis, $L=N$ or $L=M$, so $P=\pi(L)=\{0\}$ or M / N.
(b) \Rightarrow (a): Let P be a submodule of M such that $N \subseteq P$. Then $\pi(P)$ is a submodule of M / N so is equal to $\{0\}$ or M. In the first case $P=N$ and in the second $P=M$ (this case requires a little more details and uses that $N \subseteq P$. To get some practice, write in detail the proof of $M \subseteq P$).
3. We only have the left ideal I and we want to show $I=I_{1} \times I_{2}$ for some left ideals I_{1} of R_{1} and I_{2} of R_{2}. We first have to find I_{1} and I_{2}. For this we take

$$
\begin{aligned}
I_{1} & =\text { all first coordinates of elements of } I \\
& =\left\{a \in R_{1} \mid(a, y) \in I \text { for some } y \in R_{2}\right\} \\
\text { and } & \\
I_{2} & =\text { all second coordinates of elements of } I \\
& =\left\{b \in R_{2} \mid(x, b) \in I \text { for some } x \in R_{1}\right\}
\end{aligned}
$$

We first show that I_{1} and I_{2} are left ideals (I just do it for I_{1}):
Let $a_{1}, a_{2} \in I_{1}$, so there are $b_{1}, b_{2} \in R_{2}$ such that $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in I$. Then $\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)=\left(a_{1}+a_{2}, b_{1}+b_{2}\right) \in I$ (since I is a left ideal), which shows that $a_{1}+a_{2} \in I_{1}$.
If $r_{1} \in R_{1}$ then $\left(r_{1}, 0\right) \in R$ and $\left(r_{1}, 0\right)\left(a_{1}, b_{1}\right)=\left(r_{1} a_{1}, 0\right) \in I$ (since I is a left ideal), which shows that $r_{1} a_{1} \in I_{1}$.
We now show that $I=I_{1} \times I_{2}$. This is an equality between sets, so we have to show $I \subseteq I_{1} \times I_{2}$ and $I_{1} \times I_{2} \subseteq I$.
" $I \subseteq I_{1} \times I_{2}$ ": Let $(a, b) \in I$. Then by definition of I_{1} and I_{2} we have $a \in I_{1}$ and $b \in I_{2}$, so $(a, b) \in I_{1} \times I_{2}$.
" $I_{1} \times I_{2} \subseteq I$ ": Let $(a, b) \in I_{1} \times I_{2}$, i.e. $a \in I_{1}$ and $b \in I_{2}$. By definition of I_{1} and I_{2} this means that there are $u \in R_{2}$ and $v \in R_{1}$ such that $(a, u) \in I$ and $(v, b) \in I$. We want to show $(a, b) \in I$ out of that. We observe that

$$
(a, b)=(a, 0)+(0, b)=(1,0)(a, u)+(0,1)(v, b)
$$

which is a sum of elements of I since $(a, u),(v, b) \in I$ and I is a left ideal.
4. (a) Use the same proof we used in class, but apply Zorn's lemma to the set of proper ideals containing x. (This set is non-empty because it contains the ideal generated by x, which is proper since x is not invertible).
(b) If x is not invertible by the previous exercise there is a maximal ideal L such that $x \in L$. Since there is only one maximal ideal in R, we have $L=M$ and $x \in M$, a contradiction.

