RING THEORY

Problem sheet 6 - Solution

- (a) "⇐" If W is a subspace of V, then either dim W = 0, in which case W = {0}, or dim W = 1, in which case W = V.
 "⇒" If the only subspaces of V are {0} and V, then V must have dimension 1 (it is easy to construct more subspaces if the dimension is greater than 1).
 - (b) (i) \Rightarrow (ii): Let $\{u_1, \ldots, u_n\}$ be a basis of V, and take $V_i = \text{Span}\{u_1, \ldots, u_i\}$. (ii) \Rightarrow (i): By the observation above: dim $V_{i+1}/V_i = 1$, i.e. dim $V_{i+1} = \dim V_i + 1$. It follows that dim V = n.
- 2. Let $\pi: M \to M/N$, $\pi(m) = m + N$.

(a) \Rightarrow (b): Since N is a proper submodule of M, we have $M/N \neq \{0\}$. Let P be a submodule of M/N. Then $P = \pi(L)$ for some submodule L of M such that $N \subseteq L$ (proposition 2.13). By hypothesis, L = N or L = M, so $P = \pi(L) = \{0\}$ or M/N.

(b) \Rightarrow (a): Let *P* be a submodule of *M* such that $N \subseteq P$. Then $\pi(P)$ is a submodule of M/N so is equal to $\{0\}$ or *M*. In the first case P = N and in the second P = M (this case requires a little more details and uses that $N \subseteq P$. To get some practice, write in detail the proof of $M \subseteq P$).

3. We only have the left ideal I and we want to show $I = I_1 \times I_2$ for some left ideals I_1 of R_1 and I_2 of R_2 . We first have to find I_1 and I_2 . For this we take

$$I_1 = \text{ all first coordinates of elements of } I$$

= { $a \in R_1 \mid (a, y) \in I$ for some $y \in R_2$ }
and
 $I_2 = \text{ all second coordinates of elements of } I$
= { $b \in R_2 \mid (x, b) \in I$ for some $x \in R_1$ }

We first show that I_1 and I_2 are left ideals (I just do it for I_1): Let $a_1, a_2 \in I_1$, so there are $b_1, b_2 \in R_2$ such that $(a_1, b_1), (a_2, b_2) \in I$. Then $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2) \in I$ (since I is a left ideal), which shows that $a_1 + a_2 \in I_1$.

If $r_1 \in R_1$ then $(r_1, 0) \in R$ and $(r_1, 0)(a_1, b_1) = (r_1a_1, 0) \in I$ (since I is a left ideal), which shows that $r_1a_1 \in I_1$.

We now show that $I = I_1 \times I_2$. This is an equality between sets, so we have to show $I \subseteq I_1 \times I_2$ and $I_1 \times I_2 \subseteq I$.

" $I \subseteq I_1 \times I_2$ ": Let $(a, b) \in I$. Then by definition of I_1 and I_2 we have $a \in I_1$ and $b \in I_2$, so $(a, b) \in I_1 \times I_2$.

" $I_1 \times I_2 \subseteq I$ ": Let $(a, b) \in I_1 \times I_2$, i.e. $a \in I_1$ and $b \in I_2$. By definition of I_1 and I_2 this means that there are $u \in R_2$ and $v \in R_1$ such that $(a, u) \in I$ and $(v, b) \in I$. We want to show $(a, b) \in I$ out of that. We observe that

$$(a,b) = (a,0) + (0,b) = (1,0)(a,u) + (0,1)(v,b)$$

which is a sum of elements of I since $(a, u), (v, b) \in I$ and I is a left ideal.

- 4. (a) Use the same proof we used in class, but apply Zorn's lemma to the set of proper ideals containing x. (This set is non-empty because it contains the ideal generated by x, which is proper since x is not invertible).
 - (b) If x is not invertible by the previous exercise there is a maximal ideal L such that $x \in L$. Since there is only one maximal ideal in R, we have L = M and $x \in M$, a contradiction.