RING THEORY

Problem sheet 5 - Solution

- 1. (a) $I \cdot m_0$ is a submodule of M, which is simple. So $I \cdot m_0 = \{0\}$ or M. But $I \cdot m_0 = \{0\}$ implies that $I \subseteq \operatorname{Ann}_R\{m_0\}$, which is not the case by hypothesis. So $I \cdot m_0 = M$ and in particular there is $i \in I$ such that $im_0 = m_0$.
 - (b) From im₀ = m₀ we deduce (1 − i)m₀ = 0, so 1 − i ∈ Ann_R{m₀} ⊆ I. Since i ∈ I we get 1 ∈ I and thus I = R.
 We check that Ann_R{m₀} is a maximal left ideal of R: Let I be a left ideal of R such that Ann_R{m₀} ⊊ I. Then by the previous argument I = R. Done.
- 2. (a) Let $M = \mathbb{Z}/8Z \times Z/12\mathbb{Z}$.

$$n \in \operatorname{Ann}_{\mathbb{Z}}(M) \Leftrightarrow \forall a, b \in \mathbb{Z} \ na = 0 \text{ in } \mathbb{Z}/8\mathbb{Z} \text{ and } nb = 0 \text{ in } \mathbb{Z}/12\mathbb{Z}$$
$$\Leftrightarrow \forall a, b \in \mathbb{Z} \ 8|na \text{ and } 12 | nb$$
$$\Leftrightarrow 8 | n \text{ and } 12 | n(\text{take } a = b = 1)$$
$$\Leftrightarrow 24 | n$$

Therefore $\operatorname{Ann}_{\mathbb{Z}}(M) = 24\mathbb{Z}$.

- (b) r + I = s + I implies r = s + i for some $i \in I$. Therefore, and using that im = 0 since $i \in I \subseteq \operatorname{Ann}_R(M)$, we obtain $(r + I) \cdot m = rm = (s + i)m = sm + im = sm = (s + I)m$.
- (c) We check the properties for R/I-module. First of all M is non-empty because it is an R-module. Let $r, s \in R$ and $a, b \in M$.
 - i. (r+I)(a+b) = r(a+b) = ra+rb = (r+I)a + (r+I)b.
 - ii. ((r+I)+(s+I))a = ((r+s)+I)a = (r+s)a = ra+sa = (r+I)a+(s+I)a. iii. (r+I)((s+I)a) = (r+I)(sa) = r(sa) = (rs)a = (rs+I)a = ((r+I)(s+I)a)
 - $\begin{array}{l} \text{III.} & (r+1)((s+1)a) = (r+1)(sa) = r(sa) = (rs)a = (rs+1)a = ((r+1)(s+1))a.\\ & I)(sa) = r(sa) = r(sa)$
 - iv. $(1+I)a = 1 \cdot a = a$.
- 3. (a) Let a ∈ R \ {0}. By hypothesis there are n, k ∈ N such that aⁿ = a^{n+k}. So aⁿ(1 − a^k) = 0. Since R has no zero divisors, a = 0 (not the case) or 1 − a^k = 0. So a^k = 1. If k = 1 then a = 1 is its own inverse, if k > 1 then a^{k-1} is the inverse of a.
 - (b) " \Rightarrow " The left ideal I + J contains I, so I + J = I or I + J = R. If I + J = I then $J \subseteq I$. " \Leftarrow " Let K be a left ideal such that $I \subseteq K$. Then either $K \subseteq I$ (in which case K = I, or I + K = R. In the later case I + K = K, so K = R.