Problem sheet 5 - Solution

1. (a) $I \cdot m_{0}$ is a submodule of M, which is simple. So $I \cdot m_{0}=\{0\}$ or M. But $I \cdot m_{0}=\{0\}$ implies that $I \subseteq \operatorname{Ann}_{R}\left\{m_{0}\right\}$, which is not the case by hypothesis. So $I \cdot m_{0}=M$ and in particular there is $i \in I$ such that $i m_{0}=m_{0}$.
(b) From $i m_{0}=m_{0}$ we deduce $(1-i) m_{0}=0$, so $1-i \in \operatorname{Ann}_{R}\left\{m_{0}\right\} \subseteq I$. Since $i \in I$ we get $1 \in I$ and thus $I=R$.
We check that $\operatorname{Ann}_{R}\left\{m_{0}\right\}$ is a maximal left ideal of R : Let I be a left ideal of R such that $\operatorname{Ann}_{R}\left\{m_{0}\right\} \varsubsetneqq I$. Then by the previous argument $I=R$. Done.
2. (a) Let $M=\mathbb{Z} / 8 Z \times Z / 12 \mathbb{Z}$.

$$
\begin{aligned}
n \in \operatorname{Ann}_{\mathbb{Z}}(M) & \Leftrightarrow \forall a, b \in \mathbb{Z} n a=0 \text { in } \mathbb{Z} / 8 \mathbb{Z} \text { and } n b=0 \text { in } \mathbb{Z} / 12 \mathbb{Z} \\
& \Leftrightarrow \forall a, b \in \mathbb{Z} 8 \mid n a \text { and } 12 \mid n b \\
& \Leftrightarrow 8 \mid n \text { and } 12 \mid n(\text { take } a=b=1) \\
& \Leftrightarrow 24 \mid n
\end{aligned}
$$

Therefore $\mathrm{Ann}_{\mathbb{Z}}(M)=24 \mathbb{Z}$.
(b) $r+I=s+I$ implies $r=s+i$ for some $i \in I$. Therefore, and using that $i m=0$ since $i \in I \subseteq \operatorname{Ann}_{R}(M)$, we obtain $(r+I) \cdot m=r m=(s+i) m=$ $s m+i m=s m=(s+I) m$.
(c) We check the properties for R / I-module. First of all M is non-empty because it is an R-module. Let $r, s \in R$ and $a, b \in M$.
i. $(r+I)(a+b)=r(a+b)=r a+r b=(r+I) a+(r+I) b$.
ii. $((r+I)+(s+I)) a=((r+s)+I) a=(r+s) a=r a+s a=(r+I) a+(s+I) a$.
iii. $(r+I)((s+I) a)=(r+I)(s a)=r(s a)=(r s) a=(r s+I) a=((r+I)(s+$ I)) a.
iv. $(1+I) a=1 \cdot a=a$.
3. (a) Let $a \in R \backslash\{0\}$. By hypothesis there are $n, k \in \mathbb{N}$ such that $a^{n}=a^{n+k}$. So $a^{n}\left(1-a^{k}\right)=0$. Since R has no zero divisors, $a=0$ (not the case) or $1-a^{k}=0$. So $a^{k}=1$. If $k=1$ then $a=1$ is its own inverse, if $k>1$ then a^{k-1} is the inverse of a.
(b) " \Rightarrow " The left ideal $I+J$ contains I, so $I+J=I$ or $I+J=R$. If $I+J=I$ then $J \subseteq I$.
" \Leftarrow " Let K be a left ideal such that $I \subseteq K$. Then either $K \subseteq I$ (in which case $K=I$, or $I+K=R$. In the later case $I+K=K$, so $K=R$.

