Problem sheet 4 - Solution

1. (a) Direct.
(b) Let $a \in \operatorname{Ann}_{R}(N)$ and $r \in R$. We show that $\operatorname{ar} \in \operatorname{Ann}_{R} N$: Let $n \in N$. Then arn $=a(r n)=0$ since $r n \in N$.
2. Let a_{1}, \ldots, a_{n} be generators of N and $b_{1}+N, \ldots, b_{k}+N$ be generators of M / N (with $b_{1}, \ldots, b_{k} \in M$.
Let $x \in M$. Then $x+N \in M / N$, so there are $r_{1}, \ldots, r_{k} \in R$ such that $x+N=$ $r_{1}\left(b_{1}+N\right)+\cdots+r_{k}\left(b_{k}+N\right)=\left(r_{1} b_{1}+\cdots+r_{k} b_{k}\right)+N$. By definition of the quotient, there is $y \in N$ such that $x=r_{1} b_{1}+\cdots+r_{k} b_{k}+y$. Since $y \in N$ there are $s_{1}, \ldots, s_{n} \in$ R such that $y=s_{1} a_{1}+\cdots+s_{n} a_{n}$, so $x=r_{1} b_{1}+\cdots+r_{k} b_{k}+s_{1} a_{1}+\cdots+s_{n} a_{n}$. So M is generated by the elements $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{k}$.
3. In order to use the first isomorphism theorem, we must have a morphism of R modules f and then we obtain an isomorphism from: the quotient of the module where f is defined by the kernel of f, to: the image of f.

Since the quotient we want to obtain is M / N, we need f to be defined on M, and to have kernel N. We try:

$$
f: M=N \oplus P \rightarrow P, f(n+p)=p
$$

(where $n \in N$ and $p \in P$).
It is easy to check that f is a morphism of R-modules (write down the details, ask me if you have a problem), and the image of f is P. We determine ker $f=$ $\{x \in M \mid f(x)=0\}$. Let $x=n+p \in M$ (again, $n \in N, p \in P$). Then $f(x)=0$ iff $p=0$ iff $x=n$ iff $x \in N$. So $\operatorname{ker} f=N$, and the result follows (by the first isomorphism theorem).
4. (a) Let $a=\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right) \in R$. Then a^{n} has diagonal $\left(x^{n}, z^{n}\right)$. To get $x^{n}=0$ and $z^{n}=0$ we must have $x \in 2(\mathbb{Z} / 4 \mathbb{Z})$ and $z=0$. Then any value of y will be fine (we get $a^{2}=0$ no matter what y is). So the elements of N have the given form. Conversely, it is easy to see that the elements given are all nilpotent.
(b) Let $r=\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \in \operatorname{Ann}_{R} N$. Then, for every $n=\left(\begin{array}{cc}2 x & y \\ 0 & 0\end{array}\right) \in N$ (with $x \in \mathbb{Z} / 4 \mathbb{Z}$) we have

$$
r n=\left(\begin{array}{cc}
2 a x & a y \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

So we want $2 a x=0$ and $a y=0$ for every x and y. Therefore $a \in 2(\mathbb{Z} / 4 \mathbb{Z})$), and we have no condition on b or c. So

$$
\operatorname{Ann}_{R} N=\left(\begin{array}{cc}
2(\mathbb{Z} / 4 \mathbb{Z}) & \mathbb{Z} / 2 \mathbb{Z} \\
0 & \mathbb{Z} / 2 \mathbb{Z}
\end{array}\right)
$$

Note that is had 8 elements.
(c) Let $r=\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ be in the right annihilator of N in R. Then, for every $n=\left(\begin{array}{cc}2 x & y \\ 0 & 0\end{array}\right) \in N($ with $x \in \mathbb{Z} / 4 \mathbb{Z})$ we have

$$
n r=\left(\begin{array}{cc}
2 x a & 2 x b+y c \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

So we want $2 a x=0$ and $2 x b+y c=0$ for every x and y. Therefore the first equation gives $a \in 2(\mathbb{Z} / 4 \mathbb{Z})$), and the second first gives $c=0$ (take $x=0$, $y=1$) and thus $2 x b=0$, which is always true (recall that the second equation is in $\mathbb{Z} / 2 \mathbb{Z})$. There is no condition on b. So

$$
\operatorname{Ann}_{R}^{\text {right }} N=\left(\begin{array}{cc}
2(\mathbb{Z} / 4 \mathbb{Z}) & \mathbb{Z} / 2 \mathbb{Z} \\
0 & 0
\end{array}\right)
$$

Note that it has 4 elements.
(d) Assume that $f: R \rightarrow R^{o p}$ is an isomorphism. Then $f(N)=N$ (easy, do it) and it follows that $f\left(\operatorname{Ann}_{R} N\right)=\operatorname{Ann}_{R}^{\text {right }} N$, which is impossible since they do not have the same number of elements.

