RING THEORY

Problem sheet 4 - Solution

- 1. (a) Direct.
 - (b) Let $a \in \operatorname{Ann}_R(N)$ and $r \in R$. We show that $ar \in \operatorname{Ann}_R N$: Let $n \in N$. Then arn = a(rn) = 0 since $rn \in N$.
- 2. Let a_1, \ldots, a_n be generators of N and $b_1 + N, \ldots, b_k + N$ be generators of M/N(with $b_1, \ldots, b_k \in M$. Let $x \in M$. Then $x + N \in M/N$, so there are $r_1, \ldots, r_k \in R$ such that $x + N = r_1(b_1+N) + \cdots + r_k(b_k+N) = (r_1b_1 + \cdots + r_kb_k) + N$. By definition of the quotient, there is $y \in N$ such that $x = r_1b_1 + \cdots + r_kb_k + y$. Since $y \in N$ there are $s_1, \ldots, s_n \in R$ such that $y = s_1a_1 + \cdots + s_na_n$, so $x = r_1b_1 + \cdots + r_kb_k + s_1a_1 + \cdots + s_na_n$. So M is generated by the elements $a_1, \ldots, a_n, b_1, \ldots, b_k$.
- 3. In order to use the first isomorphism theorem, we must have a morphism of R-modules f and then we obtain an isomorphism from: the quotient of the module where f is defined by the kernel of f, to: the image of f.

Since the quotient we want to obtain is M/N, we need f to be defined on M, and to have kernel N. We try:

$$f: M = N \oplus P \to P, \ f(n+p) = p$$

(where $n \in N$ and $p \in P$).

It is easy to check that f is a morphism of R-modules (write down the details, ask me if you have a problem), and the image of f is P. We determine ker $f = \{x \in M \mid f(x) = 0\}$. Let $x = n + p \in M$ (again, $n \in N, p \in P$). Then f(x) = 0 iff p = 0 iff x = n iff $x \in N$. So ker f = N, and the result follows (by the first isomorphism theorem).

- 4. (a) Let $a = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \in R$. Then a^n has diagonal (x^n, z^n) . To get $x^n = 0$ and $z^n = 0$ we must have $x \in 2(\mathbb{Z}/4\mathbb{Z})$ and z = 0. Then any value of y will be fine (we get $a^2 = 0$ no matter what y is). So the elements of N have the given form. Conversely, it is easy to see that the elements given are all nilpotent.
 - (b) Let $r = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in \operatorname{Ann}_R N$. Then, for every $n = \begin{pmatrix} 2x & y \\ 0 & 0 \end{pmatrix} \in N$ (with $x \in \mathbb{Z}/4\mathbb{Z}$) we have $rn = \begin{pmatrix} 2ax & ay \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

$$rn = \begin{pmatrix} 2ax & ay \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

So we want 2ax = 0 and ay = 0 for every x and y. Therefore $a \in 2(\mathbb{Z}/4\mathbb{Z}))$, and we have no condition on b or c. So

Ann_R
$$N = \begin{pmatrix} 2(\mathbb{Z}/4\mathbb{Z}) & \mathbb{Z}/2\mathbb{Z} \\ 0 & \mathbb{Z}/2\mathbb{Z} \end{pmatrix}.$$

Note that is had 8 elements.

(c) Let
$$r = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$
 be in the right annihilator of N in R . Then, for every $n = \begin{pmatrix} 2x & y \\ 0 & 0 \end{pmatrix} \in N$ (with $x \in \mathbb{Z}/4\mathbb{Z}$) we have

$$nr = \begin{pmatrix} 2xa & 2xb + yc \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

So we want 2ax = 0 and 2xb + yc = 0 for every x and y. Therefore the first equation gives $a \in 2(\mathbb{Z}/4\mathbb{Z})$, and the second first gives c = 0 (take x = 0, y = 1) and thus 2xb = 0, which is always true (recall that the second equation is in $\mathbb{Z}/2\mathbb{Z}$). There is no condition on b. So

Ann_R^{right}
$$N = \begin{pmatrix} 2(\mathbb{Z}/4\mathbb{Z}) & \mathbb{Z}/2\mathbb{Z} \\ 0 & 0 \end{pmatrix}.$$

Note that it has 4 elements.

(d) Assume that $f: R \to R^{op}$ is an isomorphism. Then f(N) = N (easy, do it) and it follows that $f(\operatorname{Ann}_R N) = \operatorname{Ann}_R^{\operatorname{right}} N$, which is impossible since they do not have the same number of elements.