Problem sheet 3 - Solution

1. (a) If $u=0$ it is clear. If $u \neq 0$ you can proceed in two ways:
1) Explicitely: Write $A=\left(a_{i j}\right), u=\left(u_{1}, \ldots, u_{n}\right)$. You want to solve $a_{11} u_{1}+$ $\cdots+a_{1 n} u_{n}=0$. That will give you the first row of A, and obviously you can take all rows of A to be equal. This equation has a solution since not all u_{i} are 0 (there are two cases, if only one u_{i} is non-zero, and if more than one is non-zero).
2) Simpler but more abstract: There is a non-zero linear map that sends u to 0 (take a basis containing u, then define the linear map by its values on the elements of the basis). The correspondance between matrices and linear maps gives a matrix A such that $A u=0$.
This reasoning can be used to show that if $u \in \mathbb{R}^{n} \backslash\{0\}$ and $v \in \mathbb{R}^{n}$, there is $A \in M_{n}(\mathbb{R})$ such that $A u=v$. It is useful for question (c).
(b) By (a), any set of elements that contains a non-zero element is linearly dependent.
(c) To show that \mathbb{R}^{n} is a simple $M_{n}(\mathbb{R})$-module, we show that if N is a non-zero submodule of \mathbb{R}^{n}, then $N=\mathbb{R}^{n}$. Let $u \in N \backslash\{0\}$. If v is any element of \mathbb{R}^{n} there is a linear map f such that $f(u)=v$. In terms of matrices is means that there is a matrix B such that $B u=v$. Therefore $\operatorname{Span}(u)=\mathbb{R}^{n}$. Since $\operatorname{Span}(u) \subseteq N$ we get $N=\mathbb{R}^{n}$.
2. (a) Clear.
(b) Because each P_{r} only involves a finite number of inderterminates.
(c) Follows from (b) and the definition of N.
(d) Take f such that $f\left(X_{1}\right)=\cdots=f\left(X_{N}\right)=0$ and $f\left(X_{N+1}\right)=1$. Since $X_{N+1} \in \operatorname{Span}\left\{X_{1}, \ldots, X_{N}\right\}$ we have $f\left(X_{N+1}\right)=0$, a contradiction.
3. (a) It is clearly non-empty and closed under sums. Let $r \in R$ and $e m \in e M$ (with $m \in M$). Then $r(e m)=(r e) m=(e r) m=e(r m) \in e M$.
(b) We first show that $M=e M+(1-e) M$ and then that $e M \cap(1-e) M=\{0\}$: Let $m \in M$. Then $m=1 \cdot m=(e+(1-e)) m=e m+(1-e) m$, so every element can be written as the sum of an element in $e M$ and an element in $(1-e) M$.
Let $m \in e M \cap(1-e) M$, i.e. $m=e m_{1}=(1-e) m_{2}$ (with $\left.m_{1}, m_{2} \in M\right)$. Multiplying by e we get: $e^{2} m_{1}=\left(e-e^{2}\right) m_{2}$, so $e m_{1}=0$, and thus $m=0$.
