Problem sheet 2 - Solution

- 1. (a) λ is linear: Direct verification. Injective: Assume Ax = AY. Then BAX = BAY i.e., X = Y. An injective linear map from a finite-dimensional vector space to a vector space of the same dimension is surjective.
 - (b) Since f is surjective there is $C \in M_n(\mathbb{R})$ such that $f(C) = I_n$ i.e., $AC = I_n$. Since the left and right inverses are the same $AB = I_n$.
- 2. Let

$$I = \{ \sum_{i=1}^{n} r_i x_i s_i \mid n \in \mathbb{N}, \ x_i \in X, \ r_i, s_i \in R \}.$$

We need to show that I is the smallest ideal containing X, so we have two things to show:

- (1) That I is an ideal. (2) That for every ideal J containing X, we have $I \subseteq J$.
- (1): I is clearly nonempty and closed under +. Let $a = \sum_{i=1}^{n} r_i x_i s_i \in I$ (with notation as above) and $r \in R$. Then

$$ra = \sum_{i=1}^{n} (rr_i)x_is_i \in I$$
, and

$$ar = \sum_{i=1}^{n} r_i x_i(s_i r) \in I,$$

so I is an ideal of R.

- (2): Let J be an ideal of R containing X. Then, for every $r, s \in R$ and $x \in X$, we have $rxs \in J$. Since J is closed under sum, we get that the elements of I are all in J.
- 3. (a) If a does not divide x, it means that $r \neq 0$. But then $r = x qa \in I$ (since $x, a \in I$), which is impossible because r would then be a positive element of I that is smaller than a.
 - (b) It follows that $I \subseteq a\mathbb{Z}$. But since $a \in I$, we have $a\mathbb{Z} \subseteq I$.
- 4. We just need to show that I is non-empty, that the sum of two elements of I is still in I, and that is $A \in R$ and $X \in I$, then $AX \in I$. All three are clear.

It shows that the same statement as proposition 1.20, written for left ideals, is not correct (I is a left ideal of $M_n(R)$, but is not of the form $M_n(J)$ for J left ideal of R).

- 5. Let $x = a_0 + a_1i + a_2j + a_3k \in C(\mathbb{H})$. Writing xi = ix, we get $2a_3j 2a_2k = 0$, which gives $a_3 = a_2 = 0$. So we have $x = a_0 + a_1i$. Writing xj = jx we get $2a_1k = 0$, i.e. $a_1 = 0$. So $x \in \mathbb{R}$. And by the definition of quaternions, we know that the elements of \mathbb{R} commute with every quaternion. This proves $C(\mathbb{H}) = \mathbb{R}$.
- 6. (a) Let $a \in R \setminus \{0\}$. Consider Ra the left ideal generated by a. Since $Ra \neq \{0\}$, we get Ra = R, and since $1 \in R$, there is $r \in R$ such that ra = 1. So a has a left inverse. Similarly, considering the right ideal generated by a, we obtain that a has a right inverse. So a is invertible.
 - (b) We know that C(R) is a ring, and it is commutative by definition. So we only have to show that every non-zero element in C(R) is invertible (left or right, it does not matter since C(R) is commutative). Let $a \in C(R) \setminus \{0\}$. Consider Ra (= aR since $a \in C(R)$) the ideal generated by a. It is non-zero, so Ra = R (since R is simple). In particular there is $r \in R$ such that ra = 1, i.e. a has an inverse in R. We still have to check that this element $r = x^{-1}$ is in C(R). But

$$x^{-1} \in C(R) \Leftrightarrow \forall z \in R \ x^{-1}z = zx^{-1}$$

 $\Leftrightarrow \forall z \in R \ z = xzx^{-1}$
 $\Leftrightarrow \forall z \in R \ zx = xz$

and this last statement is true since $x \in C(R)$.