Solutions (problem sheet 1)

Warning: a solution provided here is just this: <u>a</u> solution. Yours is probably quite good or even better.

- 1. (a) By hypothesis there is $b \in R$ such that $ba^n = 1$ and $a^n b = 1$. It follows that $(ba^{n-1})a = 1$, so a has a left inverse, and $a(a^{n-1}b) = 1$ so a has a right inverse. So a is invertible.
 - (b) Let b be a left inverse of a. Assume ac = 0 for some $c \neq 0$ (i.e. a is a left zero divisor). Multiplying on the left by b we obtain c = 0, a contradiction.
 - (c) Since $a \in aRa$ we have a = ara for some $r \in R$. Then a(1-ra) = 0, and since a is not a left zero divisor, it follows that 1 ra = 0, so ra = 1, and r is a left inverse of a.
- 2. Consider $(x+x)^2$. By hypothesis we have $(x+x)^2 = x+x$. Developping we get $4x^2 = 2x$ and using the hypothesis again 4x = 2x, so 2x = 0, in other words x = -x for every $x \in R$.

We have $x + y = (x + y)^2 = x^2 + xy + yx + y^2 = x + xy + yx + y$. This gives 0 = xy + yx, *i.e.* xy = -yx. Now use that we just proved that -yx = yx.

3. We check that $I \cap J$ is a left ideal by using the reformulation of the definition in Remark 1.10 (it is almost always the most convenient).

To show that $I \cap J$ is non-empty, we observe that it contains 0: We have $0 \in I \cap J$ since $0 \in I$ and $0 \in J$. Let $x, y \in I \cap J$, i.e. $x, y \in I$ and $x, y \in J$. Since I and J are left ideals then $x + y \in I$ and $x + y \in J$, so $x + y \in I \cap J$. Let $x \in I \cap J$ and $a \in R$. Since I and J are left ideals we have $ax \in I$ and $ax \in J$, so $ax \in I \cap J$.

4. Since $f(0_R) = 0_S$ and $0_S \in K$ we have $0_R \in f^{-1}(K)$.

Let $a, b \in f^{-1}(K)$ (i.e., $f(a), f(b) \in K$) and let $r \in R$. Then $f(a+b) = f(a) + f(b) \in K$ (since K is closed under sums), which means $a + b \in f^{-1}(K)$, and $f(ra) = f(r)f(a) \in K$ (since K is closed under products on the left), which means $ra \in f^{-1}(K)$. Similarly $ar \in f^{-1}(K)$.

5. (a) The element 1 is the only element with the property that $1 \cdot a = a \cdot 1 = a$ for every $a \in R$. Here, using the definition of the product, the element 1 is characterised by the property $1 \circ f = f \circ 1 = f$

for every $f \in R$. So 1 = id (id satisifies this property, and it is easy to check that if two elements have it, they must be equal).

(b) We want $g \circ (f + h) = g \circ f + g \circ h$ and $(g + f) \circ h = g \circ h + f \circ h$. These are equalities between functions, so to check them, we check them at each point. Let $x \in V$. Then

$$g \circ (f+h)(x) = g(f(x)+h(x)) = g(f(x))+g(h(x)) = g \circ f(x)+g \circ h(x),$$

$$(g+f) \circ h(x) = (g+f)(h(x)) = g(h(x))+f(h(x)) = g \circ h(x)+f \circ h(x).$$

6. We obviously have $g \circ f = id$, so g is right invertible and f is left invertible. But g is not left invertible, otherwise g would be injective, which is not the case. For a similar reason, f is also not right invertible.