Solutions (problem sheet 1)

Warning: a solution provided here is just this: a solution. Yours is probably quite good or even better.

1. (a) By hypothesis there is $b \in R$ such that $b a^{n}=1$ and $a^{n} b=1$. It follows that $\left(b a^{n-1}\right) a=1$, so a has a left inverse, and $a\left(a^{n-1} b\right)=1$ so a has a right inverse. So a is invertible.
(b) Let b be a left inverse of a. Assume $a c=0$ for some $c \neq 0$ (i.e. a is a left zero divisor). Multiplying on the left by b we obtain $c=0$, a contradiction.
(c) Since $a \in a R a$ we have $a=a r a$ for some $r \in R$. Then $a(1-r a)=$ 0 , and since a is not a left zero divisor, it follows that $1-r a=0$, so $r a=1$, and r is a left inverse of a.
2. Consider $(x+x)^{2}$. By hypothesis we have $(x+x)^{2}=x+x$. Developping we get $4 x^{2}=2 x$ and using the hypothesis again $4 x=2 x$, so $2 x=0$, in other words $x=-x$ for every $x \in R$.
We have $x+y=(x+y)^{2}=x^{2}+x y+y x+y^{2}=x+x y+y x+y$. This gives $0=x y+y x$, i.e. $x y=-y x$. Now use that we just proved that $-y x=y x$.
3. We check that $I \cap J$ is a left ideal by using the reformulation of the definition in Remark 1.10 (it is almost always the most convenient).
To show that $I \cap J$ is non-empty, we observe that it contains 0 : We have $0 \in I \cap J$ since $0 \in I$ and $0 \in J$.
Let $x, y \in I \cap J$, i.e. $x, y \in I$ and $x, y \in J$. Since I and J are left ideals then $x+y \in I$ and $x+y \in J$, so $x+y \in I \cap J$.
Let $x \in I \cap J$ and $a \in R$. Since I and J are left ideals we have $a x \in I$ and $a x \in J$, so $a x \in I \cap J$.
4. Since $f\left(0_{R}\right)=0_{S}$ and $0_{S} \in K$ we have $0_{R} \in f^{-1}(K)$.

Let $a, b \in f^{-1}(K)$ (i.e., $f(a), f(b) \in K$) and let $r \in R$. Then $f(a+b)=$ $f(a)+f(b) \in K$ (since K is closed under sums), which means $a+b \in$ $f^{-1}(K)$, and $f(r a)=f(r) f(a) \in K$ (since K is closed under products on the left), which means $r a \in f^{-1}(K)$. Similarly $a r \in f^{-1}(K)$.
5. (a) The element 1 is the only element with the property that $1 \cdot a=$ $a \cdot 1=a$ for every $a \in R$. Here, using the definition of the product, the element 1 is characterised by the property $1 \circ f=f \circ 1=f$
for every $f \in R$. So $1=\mathrm{id}$ (id satisifies this property, and it is easy to check that if two elements have it, they must be equal).
(b) We want $g \circ(f+h)=g \circ f+g \circ h$ and $(g+f) \circ h=g \circ h+f \circ h$. These are equalities between functions, so to check them, we check them at each point. Let $x \in V$. Then

$$
\begin{aligned}
& g \circ(f+h)(x)=g(f(x)+h(x))=g(f(x))+g(h(x))=g \circ f(x)+g \circ h(x), \\
& (g+f) \circ h(x)=(g+f)(h(x))=g(h(x))+f(h(x))=g \circ h(x)+f \circ h(x) .
\end{aligned}
$$

6. We obviously have $g \circ f=\mathrm{id}$, so g is right invertible and f is left invertible. But g is not left invertible, otherwise g would be injective, which is not the case. For a similar reason, f is also not right invertible.
