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General remarks:

� In particular if you want to look at past exams:

This course used to be called MATH40010, Ring Theory, so this is
where you should look for past exams.

But MATH40010 was reduced (not by me) in 2020 from 10 credits and
4 hours per week (and a 3-hour long final exam) to 5 credits and 3
hours per week (and a 2-hour long final exam). In particular I had to
cut its content by about 30%.

So if you look at past exams from MATH40010, some questions will
be about topics that we will not see this trimester (mostly questions
involving the words “dense”, “density” or “primitive”). Just ignore
them.

� Convention for the definitions:

The terms that are defined in bold face are the very important ones,
that we will use a lot.

The terms that are defined, but not in bold face will not be used (much)
in this course (and you can even ask me at the exam in case they appear
there and you are not too sure).
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Chapter 1

Rings

1.1 Basic notions

Definition 1.1. A ring is a nonempty set R containing an element 0 and
an element 1 and equipped with two binary operations + and . such that:

1. (R,+, 0) is an Abelian group;

2. . is associative, i.e., for every a, b, c ∈ R a.(b.c) = (a.b).c;

3. Left and right distributivity:
For every a, b, c ∈ R a.(b+ c) = a.b+ a.c and (a+ b).c = a.c+ b.c;

4. For all a ∈ R a.1 = 1.a = a.

R is said to be commutative if ab = ba for all a, b ∈ R.

Remark. � In some books, a ring is what we will call a “ring without
1”, i.e., a ring that may not contain an element 1 satisfying the last
condition.

� We will simply write ab for a.b.

If R is a ring, a ∈ R and n ∈ Z, we define:

na =


a+ · · ·+ a (n times) if n > 0

0 if n = 0

−a+ · · ·+ (−a) (n times) if n < 0

.

Definition 1.2. A subset S of a ring R is called a subring if 0, 1 ∈ S and
S, equipped with the addition and multiplication form R, is itself a ring (with
same 0 and 1 as R).

5



6 CHAPTER 1. RINGS

Remark. S is a subring of R if and only if 1 ∈ S and if a, b ∈ S then
−a, a+ b, ab ∈ S.

Corollary 1.3. Let R be a ring. For all a, b ∈ R, n ∈ Z:

1. 0a = a0 = 0.

2. (−1)a = −a = a(−1).

3. (−a)b = a(−b) = −(ab).

4. (−a)(−b) = ab.

5. (na)b = a(nb) = n(ab)

6. If ab = ba then (a+ b)n =
∑n

i=0

(
n
i

)
aibn−i.

Proof. Exercise.

Definition 1.4. Let R be a ring.

1. a ∈ R \ {0} is a left (respectively right) zero divisor if there exists
b ∈ R \ {0} such that ab = 0 (respectively ba = 0).

2. a ∈ R is said to be left (respectively right) invertible if there exists
c ∈ R (respectively b ∈ R) such that ca = 1 (respectively ab = 1).
The element c (respectively b) is called a left inverse of a (respectively
right inverse of a).
An element which is both left and right invertible is called invertible
or a unit. The set of units of R will be denoted by U(R) (the notation
R× is also common, be careful that it does not mean R \ {0}).

Corollary 1.5. Let R be a ring.

1. If a ∈ U(R), then the left and right inverses of a coincide, and are
denoted by a−1, the inverse of a.

2. (U(R), ., 1) is a group.

Definition 1.6. A ring R 6= {0} with no (left or right) zero divisor is called
a domain.
A ring in which every nonzero element is invertible is called a division ring
(or a skew field). A field is a commutative division ring.

Example. � (Z,+, ., 0, 1) is a domain.

� (R,+, ., 0, 1) and (C,+, ., 0, 1) are fields.
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� (Mn(R),+, ., 0, In) is a ring (a noncommutative ring if n ≥ 2).

� (Z/nZ,+, ., 0, 1) is a commutative ring.

� R[X] is a domain.

� Z/6Z has zero divisors (for example 3.2 = 0).

� Z/pZ is a field if p is prime:
Let b ∈ Z with image b̄ ∈ Z/pZ. We must find the inverse of b. Since
p is prime, we have gcd(b, p) = 1 and there exists u, v ∈ Z such that
bu+ pv = 1. In Z/pZ, this gives b̄ū+ p̄v̄ = 1̄, and (using that p̄v̄ = 0̄):
b̄ū = 1.
Since Z/pZ is commutative, b̄ū = ūb̄ = 1̄, and ū is the inverse of b.

On the topic of division rings, we cite the following important (and fa-
mous) result from Wedderburn without proof (we could do it, but it requires
spending quite a bit of time on polynomials with coefficients in fields):

Theorem 1.7 (Wedderburn). A finite division ring is commutative (i.e., is
a field).

Definition 1.8. Let R and S be rings. A map f : R 7→ S is a morphism
(or homomorphism) of rings if:

1. f(1) = 1.

2. For all a, b ∈ R, f(a+ b) = f(a) + f(b) and f(ab) = f(a)f(b).

If f is bijective, then f is a called an isomorphism) of rings.
You will also sometimes find the terminology monomorphism, or embed-

ding (resp. epimorphism) of rings if f is injective (resp. surjective).
A morphism of rings from R to R is called an endomorphism of R, and

the set of all endomorphisms of rings from R to R is denoted by End(R).

The kernel of f is

ker (f) = {x ∈ R | f(x) = 0}.

The image of f is
Im (f) = {f(x) | x ∈ R}.

Two rings R and S are isomorphic if there is an isomorphism of rings f
from R to S. This is denoted by R ∼= S (or R ' S).

Example (of morphisms). 1. R→Mn(R), x 7→ x.In;
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2. Z→ Z/pZ, x 7→ x+ pZ;

3. Z→ Z, x 7→ 2x, is not a morphism since it does not send 1 to 1.

If f : R 7→ S is a morphism of rings, ker(f) has some obvious properties,
for instance: 0 ∈ ker(f), and if a, b ∈ ker(f) and r ∈ R, then a + b, ar, ra ∈
ker(f). In other words, ker f is an additive subgroup of R, with the additional
property that ar, ra ∈ ker f whenever a ∈ ker f and r ∈ R
This motivates the following definition:

Definition 1.9. Let R be a ring. A subset I of R is called a left (respectively
right) ideal of R if:

1. I is an additive subgroup of R.

2. For every a ∈ I and every r ∈ R we have ra ∈ I (respectively ar ∈ I).

I is called an ideal (or 2-sided ideal) if I is both a left and right ideal.
An ideal that is different from R is called a proper ideal.

Remark 1.10. 1. The definition can be reformulated as follows (easy ex-
ercise, do it): I is a left (resp. right) ideal of R if an only if: I is
non-empty, and for every a, b ∈ I and r ∈ R, a + b, ra ∈ I (resp.
a+ b, ar ∈ I).

2. ker(f) is an ideal.

3. A left (resp. right) ideal I is proper if and only if 1 6∈ I:
If 1 6∈ I, then I is necessarily proper. Conversely, suppose I is proper,
but 1 ∈ I. Then for every r ∈ R, r = r.1 ∈ I (resp. r = 1.r ∈ I),
which gives I = R, a contradiction.

4. Similarly: A left (resp. right) ideal I is proper if and only if I does not
contain any invertible element from R (exercise).

The role of ideals in ring theory can be compared to the role of normal
subgroups in group theory (this will become clear in the next few results).

If R is a ring and I is an ideal of R, then I is a normal subgroup of
(R,+, 0) since (R,+, 0) is a commutative group.
In particular, the quotient group (R/I,+, 0 + I) is well-defined where:

R/I = {a+ I | a ∈ R}

and the sum is defined by

(a+ I) + (b+ I) = (a+ b) + I.

We can even define a ring structure on R/I:
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Theorem 1.11. Let R be a ring and I and ideal (i.e., 2-sided ideal) of R.
Then:

1. The additive group R/I can be turned into a ring with the multiplication
given by:

(a+ I).(b+ I) = (ab) + I,

and with identity 1 + I.
R/I is called the quotient ring of R by I.
If R is commutative, then R/I is commutative.

2. The map π : R → R/I
a 7→ a+ I

is a surjective morphism of rings, and

ker(π) = I. π is called the canonical projection from R to R/I.

Proof. 1. We first check that the multiplication is well-defined, i.e.,:

(a+ I = a′ + I and b+ I = b′ + I)⇒ (ab) + I = (a′b′) + I.

We have a′ = a+ i, b′ = b+ j with i, j ∈ I.
a′b′ = (a+ i)(b+ j) = ab+ aj + ib+ ij, and the last three terms (and
hence their sum) are in I since I is an ideal. This gives a′b′+I = ab+I.
The other properties (associativity, distributivity, identity element) are
easy to check.

2. To check that π is a morphism of rings, we use the definitions of sum
and product in R/I, namely:

(a+ b) + I = (a+ I) + (b+ I) and (a.b) + I = (a+ I).(b+ I).

With this π(a + b) = (a + b) + I = (a + I) + (b + I) = π(a) + π(b),
π(ab) = (ab) + I = (a+ I).(b+ I) = π(a).π(b), and π(1) = 1 + I.

Remark. 1. Why is the quotient ring R/I interesting? If you look back
at the definition of quotient of groups, we have:

a+ I = b+ I ⇔ ∃i ∈ I a = b+ i

which means that the elements a, b from R become identified in R/I
when they differ by an element of I. In particular

a+ I = 0 + I ⇔ a ∈ I.

In other words: going from R to R/I (where the elements are of the
form a+ I), we identify the elements of I with zero (so I “disapears”).
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2. We have seen that if f is a morphism of rings, ker(f) is an ideal.
Theorem 1.11 2 gives the converse: every ideal is of the form ker(f)
for some morphism of rings f (the π in the theorem).

3. The notation ā for a + I is very common (at least when I is already
given, so that there is no ambiguity).

Proposition 1.12. Let I be an ideal in a ring R. Then there is a one-to-one
correspondence between the ideals of R containing I and the ideals of R/I,
given by J 7→ π(J) = J/I. Explicitely:

{J | J ideal of R, I ⊆ J} ↔ {K | K ideal of R/I}
J 7→ π(J) = J/I

π−1(K) ← [ K

This describes the ideals of R/I using the ideals of R.

Proof. We first show that the map is injective: Let J1, J2 be ideals of R
containing I, such that J1/I = J2/I.
Let a ∈ J1. Then a + I ∈ J1/I = J2/I. This implies that there exist i ∈ I
and b ∈ J2 such that a+ i = j2 i.e., a = j2 − i. But j2 − i ∈ J2 since I ⊆ J2.
This proves a ∈ J2 and then J1 ⊆ J2.
Similarly we have J2 ⊆ J1, which gives J1 = J2.

We now show that the map is surjective: Let L be an ideal of R/I, and
define J = π−1(L). We check easily that J is an ideal of R (in fact, if f is
a morphism of rings f−1(an ideal) is an ideal), and since π is surjective we
have π(J) = L, i.e., J/I = L.

Lemma 1.13. If {Ik}k∈K are left (resp. right) ideals of a ring R, then⋂
k∈K Ik is a left (resp. right) ideal of R (i.e., any intersection of left (resp.

right) ideals is a left (resp. right) ideal).

Proof. Exercise.

Definition/Corollary 1.14. Let X be a subset of a ring R. The ideal
generated by X , denoted by (X), is the intersection of all the ideals
containing X, i.e.,:

(X) =
⋂
{I | I ideal, X ⊆ I}.

It is therefore, by definition, the smallest ideal containing X. The elements
of X are called the generators.

We can also define the left (resp. right) ideal generated by X, by
taking the intersection of all the left (resp. right) ideals containing X. They
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will be denoted similarly, by (X)` (for the left ideal) and (X)r (for the right
ideal).

If X = {x1, . . . , xn} then (X) is denoted by (x1, . . . , xn) and is called
finitely generated. (With similar terminology for the left or right ideals
generated by X).

An ideal (a) generated by a single element a ∈ R is called principal.

Exercise 1.15. With notation as in Definition 1.14, we have

(X) = {
t∑
i=1

aiyibi | t ∈ N, ai, bi ∈ R, yi ∈ X},

(X)` = {
t∑
i=1

aiyi | t ∈ N, ai ∈ R, yi ∈ X},

(X)r = {
t∑
i=1

yibi | t ∈ N, bi ∈ R, yi ∈ X}.

We introduce the sums and products of left / right / 2-sided ideals.
Let A1, . . . An be nonempty subsets of a ring R. We denote by A1+· · ·+An

the set:
{a1 + · · ·+ an | ai ∈ Ai, i = 1, . . . , n},

and by A1. . . . .An the set:

{
m∑
k=1

a1,k. . . . .an,k | m ∈ N∗, ai,k ∈ Ai, i = 1, . . . , n, k = 1, . . . ,m}

(the set of finite sums of products of the form a1. . . . .an for ai ∈ Ai).

Definition/Proposition 1.16. Let A1, . . . , An be (left, resp. right) ideals
in a ring R. Then A1 + · · ·+An and A1. . . . .An are (left, resp. right) ideals
of R.
A1 + · · ·+An is called the sum of A1, . . . , An, and A1. . . . .An is called the
product of A1, . . . , An.

Proof. For left ideals, and A1 + · · · + An (the other parts of the proof are
similar, and are left as exercise –do it!!–):

1. A1 + · · ·+ An is an additive subgroup of R:
Let a1+ · · ·+an, b1+ · · ·+bn ∈ A1+ · · ·+An. Then −a1+ · · ·+(−an) ∈
A1 + · · · + An (since −ai ∈ Ai), and a1 + · · · + an + b1 + · · · + bn ∈
A1 + · · ·+ An (since ai + bi ∈ Ai).
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2. Product by elements of R (on the left):
Let a1 + · · ·+ an ∈ A1 + · · ·+ An and r ∈ R. Then r(a1 + · · ·+ an) =
ra1 + · · · + ran ∈ A1 + · · · + An (because rai ∈ Ai, since Ai is a left
ideal).

Thus A1 + · · ·+ An is a left ideal of R.

Remark. A1 + · · · + An is the smallest (left, resp. right) ideal containing
A1, . . . , An.1

This can be seen as follows (for left ideals), by checking the two properties
from the statement:
(1) We have seen that A1 + · · ·+ An is a left ideal.
(2) Every left ideal that contains A1, . . . , An contains A1 + · · · + An (very
straightforward from the definition of left ideal).

The smallest left ideal containing A1, . . . , An is by definition (A1 ∪ · · · ∪
An), i.e, is ⋂

{I | I left ideal, A1, . . . , An ⊆ I}.

We now show that A1 + · · · + An is contained in any left ideal containing
A1, . . . , An.
Let I be an ideal containing A1, . . . , An. Then I 3 a1 + · · · an, for every
ai ∈ Ai, i = 1, · · · , n. This means I ⊇ A1+· · ·+An, which implies (A1∪· · ·∪
An) ⊇ A1 + · · ·An. The first one is the smallest ideal containing A1, . . . , An,
and the second one is an even smaller ideal containing A1, . . . , An. This
implies (A1 ∪ · · · ∪ An) = A1 + · · ·An.

Theorem 1.17 (Isomorphism theorems). We have the following:

1. Let f : R→ S be a morphism of rings. Then f induces an isomorphism
of rings:

f̃ : R/ ker(f) → Im(f)
x+ ker(f) 7→ f(x)

.

This result is also true for rings without 1.

2. Let I and J be ideals in a ring R. Then:

(a) There is an isomorphism of rings:

I/(I ∩ J) → (I + J)/J
x+ I ∩ J 7→ x+ J

.

1It means 2 things: (1) that A1+ · · ·+An is a (left, resp. right) ideal, and (2) that any
(left, resp. right) ideal containing A1, . . . , An contains A1 + · · · + An (so is bigger than
A1 + · · ·+An).
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(b) If I ⊆ J , then J/I is an ideal of R/I and there is an isomorphism
of rings:

(R/I)/(J/I) → R/J
(x+ I) + J/I 7→ x+ J

.

Proof. 1. This is true for the additive Abelian groups (R,+), (S,+) and
(ker(f),+), i.e.,:

f̃ : R/ ker(f) → Im(f)
x+ ker(f) 7→ f(x)

,

is an isomorphism of additive groups.
We only have to check that it is a morphism of rings. Let a, b ∈ R.
Then f̃((a+ker(f))(b+ker(f)) = f̃(ab+ker(f)) = f(ab) = f(a)f(b) =
f̃(a+ ker(f))f̃(b+ ker(f)), and we also have f̃(1 + ker(f)) = f(1) = 1.

2. (a) Apply the first part for f : I → (I + J)/J
x 7→ (x+ 0) + J

.

(b) Apply the first part for f : R/I → R/J
x+ I 7→ x+ J

.

Definition 1.18. A ring R is simple if the only ideals of R are {0} and R.

Important example: A division ring, and in particular a field, is a simple
ring, as can be seen using Remark 1.10.4. (do it!! We will see other examples
later).

We know consider rings of matrices:

Definition/Proposition 1.19. Let R be a ring, and let n ∈ N. The ring of
n× n matrices over R is the set of all n× n matrices with coefficients in R,
equipped with the usual sum and product of matrices. Its identity element is
In. It is denoted by Mn(R).

No proof (not hard, but long and not very interesting at all). �

Example. Mn(Z), Mn(H), Mn(Z/nZ).

Proposition 1.20. Let R be a ring. Then J is an ideal of Mn(R) if and
only if J is of the form Mn(I) (the set of n× n matrices with coefficients in
I) for some ideal I of R.

The proof will require the following lemma, which is obtained by an easy
direct computation.
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Lemma 1.21. For 1 ≤ r, s ≤ n, let Er,s be the matrix in Mn(R) with 1 as
the row r-column s entry and 0 elsewhere.
Then for every matrix A = (aij)1≤i,j≤n ∈Mn(R), the matrix Ep,rAEs,q is the
matrix with ars as row p-column q entry and 0 elsewhere.

Proof of Proposition 1.20. .
“⇐” Let I be an ideal of R. Then Mn(I) is an additive subgroup of

Mn(R) (since I is an additive subgroup of R).
Let (aij)1≤i,j≤n ∈Mn(I), and (bij)1≤i,j≤n ∈Mn(R).
Then (aij)1≤i,j≤n(bij)1≤i,j≤n = (cij)1≤i,j≤n, with cij =

∑n
k=1 aikbkj. The coef-

ficients of the sum are in I (since I is an ideal and aik ∈ I), and then cij ∈ I.
This proves (cij)1≤i,j≤n ∈Mn(I).
Similarly, (bij)1≤i,j≤n(aij)1≤i,j≤n ∈Mn(I).
Mn(I) is then an ideal of Mn(R).

”⇒” Let J be an ideal of Mn(R) and define:

I = {a ∈ R | a appears in the top left corner of some matrix in J}.

I is clearly an ideal of R: take a, b ∈ I and r ∈ R. Then a (resp. b) appears
in the top left corner of some matrix A ∈ J (resp. B ∈ J), and we see that
a + b is given by the matrix A + B (which is in J since J is an ideal), and
ra, ar are given by the matrices (rIn).A,A.(rIn) (which also are in J , since
J is an ideal).

We know check that J = Mn(I) and this is where we use the lemma.
We first prove that Mn(I) ⊆ J :

Let A = (aij)1≤i,j≤n ∈Mn(I), i.e., there exist matrices Aij ∈ J such that aij
appears in the top left corner of Aij.
Since Aij ∈ J , we will express A using the matrices Aij. Using the previous
lemma, we know that the matrix Ei,1AijE1,j contains only zeroes, except
for the coordinate (i, j) which is aij. Moreover, this matrix is in J because
Aij ∈ J and J is an ideal.
Then A =

∑
1≤i,j≤nEi,1AijE1,j ∈ J .

To conclude, we check that J ⊆Mn(I):
Let A = (aij)1≤i,j≤n ∈ J . We have to show that aij ∈ I for every 1 ≤ i, j ≤ n.
But using lemma 1.21 we have:

aij 0 · · · 0
0 0 · · · 0
. . . . . .
0 · · · · · · 0

 = E1,iAEj,1,

with E1,iAEj,1 ∈ J since A ∈ J and J ideal. This gives aij ∈ I for every
i, j ∈ {1, . . . , n}, and thus A ∈Mn(I).
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Remark. The same statement as Proposition 1.20 but for left or right ideals,
is false. See one of the exercise sheets.

1.2 Hamilton’s quaternions

We know that the ring C is completely determined by:

� C is a ring.

� C is R⊕ Ri as R-vector space.

� i2 = −1 and ia = ai for every a ∈ R.

This has been generalized (by Hamilton):

Definition 1.22. The ring H of (real) quaternions is the ring determined
by:

� H is a ring.

� H = R⊕ Ri⊕ Rj ⊕ Rk as R-vector space.

� i2 = j2 = −1, ij = −ji = k, and i, j, k commute with the elements of
R. (Where we say that x commutes with the elements of R if xa = ax
for every a ∈ R.)

One can check that the definition of ring is verified (it is a very direct,
but long, computation).

We have:

� ik = i(ij) = i2j = −j.

� jk = j(ij) = j(−ji) = −j2i = i.

� ki = (ij)i = (−ji)i = −ji2 = j.

� kj = (ij)j = ij2 = −i.

� k2 = (ij)(ij) = (ij)(−ji) = −ij2i = i2 = −1.

For α = a+ bi+ cj + dk ∈ H we define

ᾱ = a− bi− cj − dk,
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the conjugate of α, and we have:

αᾱ = (a+ bi+ cj + dk)(a− bi− cj − dk)

= a2 − abi− acj − adk + bia− (bi)(bi)− (bi)(cj)− (bi)(dk)

+ cja− (cj)(bi)− (cj)(cj)− (cj)(dk) + dka− (dk)(bi)

− (dk)(cj)− (dk)(dk)

= a2 − abi− acj − adk + abi+ b2 − bck + bdj + caj + bck+

c2 − cdi+ adk − dbj + cdi+ d2

= a2 + b2 + c2 + d2.

Applying this to ᾱ we get ᾱ ¯̄α = ᾱα = a2 + b2 + c2 + d2, and we then define:

n(α) = ᾱα = αᾱ = a2 + b2 + c2 + d2,

the norm of α.
Since the norm is the sum of squares of the coefficients of α, computed

in R, we get the following important consequence:
If α 6= 0 then n(α) 6= 0 and thus n(α) has an inverse in R. This gives:

(n(α)−1ᾱ)α = n(α)−1(ᾱα) = n(α)−1n(α) = 1, and

α(n(α)−1ᾱ) = (αᾱ)n(α)−1 = n(α)n(α)−1 = 1

In other words, every nonzero element α ∈ H has an inverse, and this inverse
is α−1 = n(α)−1ᾱ.
H is then a division ring (but H is not commutative since ij = −ji).
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Modules

Definition 2.1. Let R be a ring. A (left) R-module M is an additive
abelian group (M, 0,+) together with a product

R×M →M, (r,m) 7→ r.m

(multiplication on the left by the elements of R), such that, for every r, s ∈ R
and a, b ∈M :

1. r(a+ b) = ra+ rb;

2. (r + s)a = ra+ sa;

3. r(sa) = (rs)a;

4. 1.a = a.

If R is a field, then a left R-module is called a vector space (over R).

Remark. 1. There is also a notion of right R-module, with multiplication
by elements of R on the right:

M ×R→M, (m, r) 7→ m.r.

2. This is a generalization of the notion of vector space, where the product
is by elements of a ring, instead of by elements of a field. It does make
a real difference, as we will see.

Example. 1. Every vector space.

2. Let R be a ring, and R[X] = the ring of polynomials in one variable
over R. Then R[X] is an R-module, with:

R×R[X] → R[X]
(r, a0 + a1X + · · ·+ anX

n) 7→ ra0 + ra1X + · · ·+ ranX
n

.

17
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3. Let (G, 0,+) be an Abelian group. Then G is a Z-module with:

Z×G→ G, (n, g) 7→ ng.

4. (Important) Let R be a ring, and let I be a left ideal of R. Then I is a
(left) R-module with:

R× I → I, (r, a) 7→ ra.

Definition 2.2. Let M be an R-module. A subset N of M is called a sub-
module if N is an additive subgroup of M and rb ∈ N for all r ∈ R, b ∈ N .

Example. 1. (Important) R is an R-module. The left ideals of R are
exactly the submodules of R (compare the definitions).

2. A vector space is a module. A sub-vector space is a submodule.

Remark. 1. A submodule is always a module (with the product given by
the module).

2. Any intersection of submodules is a submodule.

Definition 2.3. Let M be an R-module, and let X ⊆ M . The intersection
of all submodules of M containing X is a submodule which is called the sub-
module generated by X (or the span of X). It is the smallest submodule
of M containing X.

Proposition 2.4. Let M be an R-module, and let X ⊆ M . The submodule
N generated by X is:

Span(X) = {
n∑
i=1

riai | n ∈ N, ri ∈ R, ai ∈ X for i = 1, · · · , n}

(it is the set of linear combinations of elements of X, with coefficients in R).

Proof. Let L = {
∑n

i=1 riai | n ∈ N, ri ∈ R, ai ∈ X for i = 1, · · · , n}. L is
clearly a submodule of M containing X, so N ⊆ L.
We now show that any submodule containing X must contain L. Let K be
a submodule containing X. Let x =

∑n
i=1 riai with ri ∈ R and ai ∈ X.

Since K ⊇ X and K is a submodule we have successively riai ∈ K and∑n
i=1 riai ∈ K. This proves that L is included in any submodule containing

X, and in particular is included in N .
We then have L = N .
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The notion of basis is central for vector spaces. What happens for mod-
ules?

Definition 2.5. Let M be an R-module, and let X ⊆M . We say that:

1. X is linearly independent if

∀n ∈ N, ∀x1, . . . , xn ∈ X all different, ∀r1, . . . rn ∈ R
r1x1 + · · ·+ rnxn = 0⇒ r1 = · · · = rn = 0.

2. X generates M (or X is a set of generators of M) if

∀a ∈M ∃n ∈ N ∃x1, . . . , xn ∈ X ∃r1, . . . rn ∈ R
a = r1x1 + · · ·+ rnxn.

(i.e., Span(X) = M).

3. X is a basis of M if X is linearly independent and X generates M .

It is possible to define the sum and direct sum of modules, exactly as for
vector spaces. We recall the definitions here. Make sure you are comfortable
with them, and have a look at your linear algebra course if necessary, because
we will use direct sums a lot.

Definition 2.6. Let M be an R-module, and let Mi, i ∈ I, be submodules of
M .

1. M is the sum of the submodules Mi, i ∈ I if each x ∈ M can be
written as a finite sum of elements of the submodules Mi, i ∈ I. We
write M =

∑∑∑
i∈IMi.

2. M is the direct sum of the submodules Mi, i ∈ I if each x ∈
M can be written in a unique way as finite sum of elements of the
submodules Mi, i ∈ I. We write M =

⊕⊕⊕
i∈IMi.

Remark. It M =
∑

i∈IMi, then M =
⊕

i∈IMi if and only if for every finite
subset J of I and every k ∈ I \ J we have Mk ∩

∑
j∈JMj = {0}.

DANGER:
In general you cannot work with bases in modules as you do with bases in
vector spaces, as the following example shows:

Consider Z as a Z-module (with usual sum and product in Z). Let a ∈ Z,
a > 1.
Then the submodule generated by a is Z.a = {na | n ∈ Z} 6= Z. We see that
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{a} does not generate Z.
We also clearly see that {a} is linearly independent.

Consider now b ∈ Z, b 6= 0. Then {a, b} is not linearly independent:
Indeed b · a + (−a) · b = 0 and the coefficients of this linear combination (b
and −a) are not both 0.

We can also check that the submodule generated by {a, b} is:

Z.d = {nd | n ∈ Z},

where d = gcd(a, b) (see exercise sheets) which is different from Z if d > 1.

Recapitulating, we have:

� {a} is linearly independent but cannot be completed to a basis
of Z.

� If gcd(a, b) = 1 with a, b > 1, then {a, b} generates Z, {a, b}
is not linearly independent, but no proper subset of {a, b}
generates Z.

However, modules over a division ring behave correctly:

Lemma 2.7. Let M be an R-module, with R a division ring. Then any
maximal linearly independent subset X of M is a basis1.

Proof. Let N be the submodule generated by X. By definition, X is a basis
of N , and the proof is finished if N = M .
Suppose N 6= M , take a ∈M \N and consider X ∪ {a}:
If we prove that X ∪ {a} is linearly independent, this will contradict “X
maximal” and we will have N = M .
Suppose ra+ r1x1 + · · ·+ rnxn = 0, with r, r1, . . . rn ∈ R, x1, . . . .xn ∈ X. We
distinguish two cases:

� If r = 0, then r1x1 + · · · + rnxn = 0, which gives r1 = · · · = rn = 0
since X is linearly independent.

� If r 6= 0, we get a = r−1(r1x1 + · · · + rnxn). In particular we have
a ∈ N , a contradiction. This case is impossible.

Theorem 2.8. Let M be a module over a division ring R. Then:

1. Every linearly independent subset of M is contained in a basis of M
(in particular, every non-zero module has a basis).

1X maximal linearly independent means 2 things: That X is linearly independent, and
that any subset strictly larger than X is not linearly independent
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2. Every set of generators of M contains a basis of M .

3. Any two bases of M have the same cardinality.

Proof. 1. Let S = {mi}i∈I be a linearly independent subset of M , and
let A = {T ⊆ M | S ⊆ T, T is linearly independent}. A, with the
(partial) order given by the inclusion (T1 ≤ T2 iff T1 ⊆ T2) is a partially
ordered set. We will apply Zorn’s lemma to A:
A is non-empty since S ∈ A.
Let B ⊆ A be a chain in A We want to find an upper bound of B in
A. Let TB =

⋃
T∈B T . We first check that TB ∈ A: Let n ∈ N and

x1, . . . xn ∈ TB. By definition of TB there exist T1, . . . , Tn ∈ B such
that xi ∈ Ti for i = 1, . . . , n.
Since B is a chain, one of the Ti contains the others, say T1. We then
have x1, . . . , xn ∈ T1, and since T1 is linearly independent, {x1, · · · , xn}
is linearly independent.
This shows that TB is linearly independent, i.e., TB ∈ A. And by
definition of TB, it is necessarilly an upper bound of B.

Zorn’s lemma then applies and gives a maximal element Tm in A: Tm
is linearly independent and is not contained in any bigger linearly in-
dependent subset of M .

We now show that Tm generates M :
Let N be the submodule generated by Tm, and suppose N 6= M .
Choose x ∈M \N . We show that Tm ∪ {x} is linearly independent:
Let n ∈ N and x1, . . . , xn ∈ Tm, r, r1, . . . , rn ∈ R such that rx+ r1x1 +
· · · + rnxn = 0. We deduce rx = (−r1)x1 + · · · + (−rnxn), and we
distinguish between 2 cases:

� If r = 0 then r1x1+· · ·+rnxn = 0, which gives (since Tm is linearly
independent): r1 = · · · = rn = 0.

� If r 6= 0 then x = r−1(−r1)x1 + · · · + r−1(−rn)xn ∈ M , a contra-
diction. This case is impossible.

Thus the first case is the only possibility, we have r = r1 = · · · = rn = 0.
Tm ∪ {x} is linearly independent, which contradicts the fact that Tm is
maximal.

2. Exercise. The idea of the proof goes as follows: Let X be a set of gener-
ators of M . Use Zorn’s lemma to find a maximal linearly independent
subset of X. This is a basis.
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3. No proof.

Definition 2.9. Let M and N be R-modules over a ring R. A map f : M →
N is a R-module homomorphism (or morphism of R-modules) if for
all a, b ∈M , for all r ∈ R:

f(a+ b) = f(a) + f(b) and f(ra) = rf(a).

f is a monomorphism (resp. epimorphism, isomorphism) if f is a mor-
phism and is injective (resp. surjective, bijective).
The kernel of f is

ker (f) = {x ∈M | f(x) = 0}.

The image of f is

Im (f) = {f(x) | x ∈M} (= f(M)).

EndRM denotes the set of all morphisms of R-modules from M to M (such
a morphism is called an endomorphism).
Two modules M and N are isomorphic if there is an isomorphism of mod-
ules f from M to N . This is denoted by M ∼= N (or M ' N).

Remark. � ker(f), Im(f) are submodules of M , N .

� If L is a submodule of M , then f(L) is a submodule of N . If P is a
submodule of N , then f−1(P ) is a submodule of M .

� ker(f) = {0} ⇔ f injective .

� You all know the notation M → N to indicate a map from M to N .
The notation M

∼→ N is used to indicate an isomorphism (it is used
for rings, modules, groups, etc and means an isomorphism of rings,
modules, groups, etc).

Remark 2.10. 1. Rn is an R-module.

2. EndRM is always a ring, under the following operations, for f, g ∈
EndRM :

� (f + g)(m) = f(m) + g(m) ∀m ∈ M . tem fg = f ◦ g, i.e.,
(fg)(m) = (f ◦ g)(m) ∀m ∈M .

The identity is the identity map from M to M .
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3. If M has a basis {u1, . . . , un} then M is isomorphic to Rn by:

Rn φ→M, (r1, . . . , rn) 7→ r1u1 + · · ·+ rnun.

And
EndRR

n ∼→ EndRM, f 7→ φ ◦ f ◦ φ−1.

Theorem 2.11. Let N be a submodule of an R-module M . Then the quotient
group M/N is an R-module with the action of R on M/N defined by:

R×M/N →M/N, (r, a+N) 7→ ra+N.

The map
π : M →M/N, a 7→ a+N

is a surjective morphism of R-modules, with kernel N . π is usually called the
canonical projection and M/N is called the quotient of M by N .

Proof. Similar to the corresponding one for rings.

Theorem 2.12 (Isomorphism theorems). We have the following:

1. Let f : M → N be a morphism of modules. Then f induces an isomor-
phism of modules:

f̃ : M/ ker(f)→ Im(f), a+ ker(f) 7→ f(a).

2. Let A and B be submodules of M . Then:

(a) There is an isomorphism of modules:

A/(A ∩B)→ (A+B)/B, x+ A ∩B 7→ x+B.

(b) If A ⊆ B, then B/A is a submodule of M/A and there is an
isomorphism of modules:

(M/A)/(B/A)→M/B, (x+ A) +B/A 7→ x+B.

Proof. Similar to the corresponding one for rings.

Proposition 2.13. Let M be an R-module and let N be a submodule of M .
There is a one-to-one correspondance between the submodules of M contain-
ing N and the submodules of M/N , given by (if π : M → M/N denotes the
canonical projection):

{submodules of M containing N} 7→ {submodules of M/N}
L 7→ π(L)

π−1(P ) ←[ P

.
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Proof. Similar to the corresponding one for rings (proposition 1.12).

Definition 2.14. A nonzero R-module M is simple if the only submodules
of M are {0} and M .

(Sometimes the terminology “irreducible” can be found, but it is also used
for other meanings, so we will avoid it.)

Remark. If M is simple, then M is generated by any nonzero element:
If m ∈ M \ {0}, then the submodule generated by m is non-zero, and then
must be M (this submodule is R.m).

Definition 2.15. Let R be a ring.

� An ideal (resp. left, right ideal) I in R is said to be maximal if I is
different from R and for every ideal (resp. left, right ideal) J of R:

I ⊆ J ⇒ (J = I or J = R).

In words: J is not R and the only (left, right two-sided) ideal strictly
larger than J is R.

� An ideal (resp. left, right ideal) I in R is said to be minimal if I is
different from {0} and for every ideal (resp. left, right ideal) J of R:

J ⊆ I ⇒ (J = {0} or J = I).

In words: I is not {0} and that only ideal strictly smaller than I is
{0}.

A ring may have several maximal (or minimal) ideals. Examples:

� LetR = Z. For a, b ∈ Z, the ideal (a, b) generated by a, b is (gcd(a, b)) =
Z.gcd(a, b), the ideal generated by gcd(a, b).
Then, if p is a prime, (p) = Z.p is maximal (so Z has a lot of maximal
ideals):
Let I be an ideal such that Z.p $ I. Take a ∈ I \Z.p. Then (a, p) ⊆ I.
But (a, p) = (gcd(a, p)) = (1) = Z. This proves that I = Z.

� Let S = Z/2Z be the ring of integers modulo 2, and let R = S × S,
with product and sum coordinate by coordinate (see Appendix A). S
is a ring, and the subsets {0} × S and S × {0} are ideals of R. They
are clearly both minimal (since they only contain 2 elements.)

Lemma 2.16. A ring R has at least one maximal ideal (resp. maximal left,
maximal right ideal).
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Proof. Consider E = {I proper ideal of R} = {I ideal of R | 1 6∈ I}, with
the order given by the inclusion, and use Zorn’s lemma (easy exercise).

Proposition 2.17. A left R-module M is simple if and only if M ∼= R/L
for some maximal left ideal L of R.

Proof. “⇒” We have M = R.m for some m ∈M , m 6= 0.
Define

f : R→M, r 7→ r.m.

It is a morphism of R-modules. f is surjective, so induces an isomorphism
from R/ ker f to M (by the isomorphism theorem). We show that ker f is
a maximal left ideal of R: Let J be a left ideal of R with ker f ⊆ J . Then
f(J) is a submodule of M , so is equal to {0} or M . In the first case we get
J = ker f , in the second case J = R, which shows that ker f is a maximal
left ideal of R.
“⇐” Let φ be the isomorphism fromM to R/L, and letN be an R-submodule
of M . Then φ(N) is a submodule of R/L. In particular φ(N) is of the form
J/L for some left ideal J of R, J ⊇ L (see proposition 1.12).
Since L is maximal we have J = L or J = R. If J = L then φ(N) = {0},
i.e., N = {0}. If J = R then φ(N) = R/L, i.e., N = M .

Proposition 2.18 (Schur’s lemma). If M is a simple R-module, then
EndRM is a division ring.

Proof. We have to show that every non-zero element f ∈ EndRM has an
inverse. Let f ∈ EndRM \ {0}.
Im f is a submodule of M , and so is {0} or M (since M is simple). The first
case is impossible because f 6= 0. We then have Im f = M , i.e., f surjective.
ker f is a submodule of M , and so is {0} or M (since M is simple). The
second case is impossible because f 6= 0. We then have ker f = {0}, i.e., f
injective.
f is then bijective, and so has an inverse, which is easily checked to be an
element of EndRM .

We conclude this part on modules by recalling the link between endomor-
phisms and square matrices.

Definition 2.19. Let R be a ring. The opposite ring Rop is the ring
defined by:

� Rop has the same elements as R and the same addition.

� The multiplication ×op in Rop is defined by a ×op b = ba (where the
product on the right-hand side is computed in R).
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Remark. � If R is a division ring, then Rop is a division ring.

� If R is commutative, we have Rop = R.

Theorem 2.20. If M is an R-module isomorphic to Rn (i.e., M has a basis
with n elements), then EndRM ∼= Mn(Rop).

Proof. We only do it for n = 2 (the general case is similar) and M = R2 (the
result for a general M follows from the third part of Remark 2.10). Let

Φ : EndRR
2 → M2(R

op)

f 7→
(
f(

(
1
0

)
) f(

(
0
1

)
)

)
,

where f(

(
1
0

)
) and f(

(
0
1

)
) are elements of R2 seen as column vectors (ex-

pressed in a fixed basis of R2). We check that Φ is an isomorphism of rings.

Let f ∈ EndRR
2. Assume Φ(f) =

(
a1 b1
a2 b2

)
. Then

f(

(
u
v

)
) = f(u

(
1
0

)
) + vf(

(
0
1

)
))

= u

(
a1
a2

)
+ v

(
b1
b2

)
=

(
ua1 + vb1
ua2 + vb2

) (2.1)

which shows that f is completely determined by Φ(f), so Φ is bijective.

It is clear that Φ(Id) =

(
1 0
0 1

)
and Φ(f + g) = Φ(f) + Φ(g) whenever

f, g ∈ EndRR
2.

Consider now g ∈ EndRR
2 with Φ(g) =

(
α1 β1
α2 β2

)
. We have

f ◦ g(

(
1
0

)
) = f(

(
α1

α2

)
)

= f(α1

(
1
0

)
+ α2

(
0
1

)
)

= α1f(

(
1
0

)
) + α2f(

(
0
1

)
)

=

(
α1a1 + α2b1
α1a2 + α2b2

)



27

and

f ◦ g(

(
0
1

)
) = f(

(
β1
β2

)
)

=

(
β1a1 + β2b1
β1a2 + β2b2

)
,

from which follows

Φ(f ◦ g) =

(
α1a1 + α2b1 β1a1 + β2b1
α1a2 + α2b2 β1a2 + β2b2

)
.

Now a product of matrices in M2(R) would give us

Φ(f)Φ(g) =

(
a1 b1
a2 b2

)(
α1 β1
α2 β2

)
=

(
a1α1 + b1α2 a1β1 + b1β2
a2α1 + b2α2 a1β1 + b2α2

)
,

which is not what we want.
But a product of matrices in M2(R

op) gives

Φ(f)Φ(g) =

(
a1 b1
a2 b2

)(
α1 β1
α2 β2

)
=

(
a1 ×op α1 + b1 ×op α2 a1 ×op β1 + b1 ×op β2
a1 ×op α1 + b2 ×op α2 a1 ×op β1 + b2 ×op α2

)
=

(
α1a1 + α2b1 β1a1 + β2b1
α1a2 + α2b2 β1a2 + β2b2

)
,

which is what we want.

Remark. If you want to then use matrices to compute the values of f , you
have to do this is Rop, indeed:

� If you compute in R, you get for f(

(
u
v

)
):

Φ(f)

(
u
v

)
=

(
a1u+ b1v
a2u+ b2v

)
,

which is not the correct result (compare with 2.1 above).

� If you compute in Rop, you get for f(

(
u
v

)
):

Φ(f)

(
u
v

)
=

(
a1 ×op u+ b1 ×op v
a2 ×op u+ b2 ×op v

)
=

(
ua1 + vb1
ua2 + vb2

)
,

which is the desired result.
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2.1 Chain conditions

Definition 2.21. A family of subsets {Ci}i∈I in a set C is said to satisfy
the ascending chain condition (ACC for short) if there does not exist an
infinite strictly increasing chain:

Ci1 & Ci2 & · · · & Cik & · · ·

of elements of {Ci}i∈I .
An equivalent condition is:
For any ascending chain Ci1 ⊆ Ci2 ⊆ · · · ⊆ Cik ⊆ · · · , of elements of {Ci}i∈I ,
there exists n ∈ N such that Cin = Cin+1 = Cin+2 = · · · .

There is a corresponding notion for descending chains:

Definition 2.22. A family of subsets {Ci}i∈I in a set C is said to satisfy
the descending chain condition (DCC for short) if there does not exist
an infinite strictly descending chain:

Ci1 ' Ci2 ' · · · ' Cik ' · · ·

of elements of {Ci}i∈I .
An equivalent condition is:
For any descending chain Ci1 ⊇ Ci2 ⊇ · · · ⊇ Cik ⊇ · · · , of elements of
{Ci}i∈I , there exists n ∈ N such that Cin = Cin+1 = Cin+2 = · · · .

Example. � If V is a finite-dimensional vector space, then the following
are equivalent (easy exercise, do it):

1. The dimension of V is finite;

2. The set of all subspaces of V satisfies the ACC;

3. The set of all subspaces of V satisfies the DCC.

Since we don’t have a well-behaved notion of dimension for R-modules,
we will use this by analogy, and consider the notions of ACC or DCC
for the set of submodules as a substitute (intuitively) to having finite
dimension. Be careful that for the set of subsmodules of a given module,
satisfying the ACC is not equivalent to satisfying the DCC.

� If C is a finite set, every family {Ci}i∈I of subsets of C satisfies both
the ACC and the DCC.
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� The ideals of Z are of the form a.Z for a ∈ Z, and a.Z ⊆ b.Z if and
only if b divides a. This implies that the set of ideals of Z satisfies
the ACC (you can only divide a given element of Z a finite number of
times).
Remark that the set of ideals of Z does not satisfy the DCC, because
(for example) Z ' 2.Z ' 22.Z ' 23.Z · · · .
Finally, observe that the ideals of Z are exactly the submodules of Z
(when Z is seen as a Z-module).

Definition 2.23. 1. A ring R is left (resp. right) Noetherian if the
set of left (resp. right) ideals of R satisfies the ACC (i.e., there is no
infinite strictly increasing chain of left (resp. right) ideals).
R is Noetherian if it is both left and right Noetherian.

2. A ring R is left (resp. right) Artinian if the set of left (resp. right)
ideals of R satisfies the DCC (i.e., there is no infinite strictly descend-
ing chain of left (resp. right) ideals).
R is Artinian if it is both left and right Artinian.

There is also a notion of Noetherian and Artinian modules (where Noethe-
rian means the set of submodules satifies the ACC, and Artinian means the
set of submodules satisfies the DCC).

Example. 1. Using the example after definition 2.22, we know that Z is
Noetherian but not Artinian.

2. A division ring D is both Noetherian and Artinian, because the only
(left, right) ideals of D are {0} and D.

3. A finite ring is both Noetherian and Artinian.

We saw that every ring has a maximal left ideal. It is not true that every
ring has a minimal left ideal (Z gives a counter-example), but it is the case
if R is Artinian:

Proposition 2.24. If R is a ring such that R 6= {0} and R satisfies the
DCC on left ideals (i.e. R is left Artinian), then R has a minimal left ideal.

Proof. Assume that R has no minimal left ideal. Pick any non-zero left ideal
J1 of R. Since J1 is not minimal, there is a non-zero left ideal J2 such that
J2 ( J1. Again, J2 is not minimal, so there is a non-zero left ideal J3 such
that J3 ( J2. If we keep doing this, we get an infinite strictly decreasing
chain of left ideals of R:

J1 ) J2 ) J3 ) · · ·
contradicting the fact that R is left Artinian.
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(This space was taken by an older version of the proof of Proposition
2.24)

We give the next two results without proof, as examples of constructions
that preserve the “Noetherian” and/or “Artinian” properties:

Proposition 2.25. If R is left (resp. right) Noetherian, then Mn(R) is left
(resp. right) Noetherian.
If R is left (resp. right) Artinian, then Mn(R) is left (resp. right) Artinian.

Remark. The proof of this proposition cannot be done using proposition
1.20, because proposition 1.20 gives informations about ideals (i.e., two-sided
ideals), but the “Artinian” and “Noetherian” properties deal with left or right
ideals.

Theorem 2.26 (Hilbert basis theorem). If R is a commutative Noetherian
ring, then so is R[x] (and thus R[x1, . . . , xn]).

2.2 Composition series

If M is a module, the notions of ACC and DCC on the set of all submodules
of M provide a kind of intuitive subsitute to the property “M has finite
dimension”.

We will try to be a bit more precise and get a substitute to “M has
dimension n”, and this can be done using the notion of composition series.
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Definition 2.27. Let M be an R-module.

1. A series S of M is a finite chain of submodules of M :

M0 ⊆M1 ⊆ · · · ⊆Mn.

Its length is the number of proper inclusions.
Its factors are the quotient modules Mi/Mi−1, for i = 1, . . . , n
Its set of modules is M(S) = {M0, . . . ,Mn}.

2. Let S and T be two series of M . T is a refinement of S if M(S) ⊆
M(T ), and a proper refinement if M(S) $M(T ).

3. A composition series of a module M is a series of M that has no
proper refinement (i.e., and it is an easy exercise, a series starting
with {0} and ending with M , in which every nonzero factor module is
simple).

Remark. 1. Not every module has a composition series. For instance,
let M be an infinite dimensional vector space over a field K. Then M
is a K-module and has no composition series (for dimension reasons).

2. Let M be a finite-dimensional vector space, with basis {u1, . . . , un}.
Then M has a composition series of length n:

{0} $ Span{u1} $ Span{u1, u2} $ · · · $ Span{u1, . . . , un−1} $M.

Actually, the following holds (easy exercise, do it):
The dimension of M is n if and only if M has a composision series of
length n.

Lemma 2.28. Let R be a ring, let M be an R-module and let M ′ be a proper
submodule of M . Assume that M has a composition series of length n. Then
M ′ has a composition series of length less than n.

Proof. Let {0} = M0 $ M1 $ · · · $ Mn = M be a composition series of M .
We consider the following series of M ′:

{0} = (M0 ∩M ′) ⊆ (M1 ∩M ′) ⊆ · · · ⊆ (Mn ∩M ′) = M ′. (2.2)

We first observe that the quotient (Mi+1 ∩M ′)/(Mi ∩M ′) is isomorphic
to the submodule Pi = [(Mi+1∩M ′) +Mi]/Mi of Mi+1/Mi (the isomorphism
is defined as follows, for x ∈Mi+1 ∩M ′: x+ (Mi ∩M ′) 7→ (x+ 0) +Mi; easy
exercise).

Since Mi+1/Mi is simple, the submodule Pi is equal to {0} or Mi+1/Mi

(and in this later case (Mi+1∩M ′)+Mi = Mi+1). So we have two possibilities
for each i:
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� (Mi+1 ∩M ′)/(Mi ∩M ′) = {0};

� (Mi+1 ∩M ′)/(Mi ∩M ′) is simple and (Mi+1 ∩M ′) +Mi = Mi+1.

Reformulating these two possibilities, we obtain, for each i, either

� (Mi+1 ∩M ′) = (Mi ∩M ′), or

� (Mi+1 ∩M ′)/(Mi ∩M ′) is simple and (Mi+1 ∩M ′) +Mi = Mi+1.

Note that this proves that the series (2.2) is a composition series (all the
proper inclusions in the series give a simple quotient).

So we only have to check that the length of the series (2.2) is less than n,
i.e., that (Mi+1 ∩M ′) = (Mi ∩M ′) for at least one i. Assume it is not the
case, i.e., (Mi+1∩M ′)/(Mi∩M ′) is simple and (Mi+1∩M ′) +Mi = Mi+1 for
every i = 0, 1, . . . , n. We prove by induction on i that it implies Mi ⊆M ′, a
contradiction for i = n:
If i = 0 we clearly have M0 = {0} ⊆M ′.
Supposing by induction that Mi ⊆M ′, we obtain M ′∩Mi+1 = (M ′∩Mi+1)+
Mi. Since by induction hypothesis we have (M ′ ∩Mi+1) + Mi = Mi+1, we
get M ′ ∩Mi+1 = Mi+1, which means Mi+1 ⊆M ′.

Remark. If M is an R-module with a composition series of length 0, then
M = {0}.

Indeed, let M1 be a composition series of M of length 0. Then M1 = M
(otherwise this composition series would have the proper refinement M1 (M)
and M1 = {0} (otherwise it would have the proper refinement {0} (M1).

Theorem 2.29. Let R be a ring and let M be an R-module.

1. M has a composition series if and only if M is Artinian and Noethe-
rian.

2. If M has a composition series of length n, then every series of M has
length at most n and can be refined to a composition series.

Proof. 1. “⇐” First observe that a module satisfying the ACC on sub-
modules always contains a maximal proper submodule (the proof is
similar to that of proposition 2.24).
We then choose a maximal proper submodule M1 of M , a maximal
proper submodule M2 of M1, and so on. . .
By the DCC on submodules, there is k ∈ N such that Mk = M`

for every ` ≥ k. But this can only happen if Mk = {0}. Then
M ⊇M1 ⊇ · · · ⊇Mk−1 ⊇ {0} is a composition series for M .
“⇒” It follows from the next item.
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2. Let N0 $ N1 $ · · · $ Nk = M be a series of M . We show by induction
on n that k ≤ n. This is clear if n = 0 since in this case M = {0}.
By lemma 2.28, Nk−1 has a composition series of length at most n− 1,
so by induction the length of the series N0 $ · · · $ Nk−1 is at most
n− 1, so the length of N0 $ N1 $ · · · $ Nk = M is less than n.

Let S be a series of M . Knowing that every series of M has length
at most n, we can then take a series of M that is a refinement (not
necessarilly proper) of S and is of maximal length. This last property
implies that it is a composition series.

Remark. In particular if M has a composition series, then any two compo-
sition series of M have the same length:

Let S1 be a composition series of length n1 and S2 be a composition series
of length n2. Then n1 ≤ n2 and n2 ≤ n1, so n1 = n2.

It is actually possible to obtain the following two results (which we will
not need) about composition series.

Definition 2.30. Two series of M are equivalent if there is a bijection be-
tween their sets of nonzero factor modules, so that corresponding factor mod-
ules are isomorphic.

Theorem 2.31 (Schreier). Any two series of a module have equivalent re-
finements.

Theorem 2.32 (Jordan-Hölder). Any two composition series of a module
are equivalent.

Proof. It follows at once from the Schreier theorem since a composition series
has no proper refinement.

Remark. Conversely, the Schreier theorem follows easily out of the Jordan-
Hölder theorem with the help of theorem 2.29.
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Chapter 3

Semisimple modules and rings

3.1 Semisimplicity

Definition 3.1. Semisimple modules are defined by any of the equivalent
conditions presented in the next proposition.

Proposition 3.2. Let M be an R-module. The following are equivalent:

1. M is a direct sum of simple submodules.

2. M is a sum of simple submodules.

3. Every submodule of M is a direct summand (i.e., for every submodule
N of M , there is a submodule P of M such that M = N ⊕ P ).

Proof. 1. ⇒ 2. is clear.
2. ⇒ 1. and 3.: By hypothesis we have M =

∑
i∈I Si, where the Si are

simple submodules of M .
Let N be a submodule of M , and consider

S = {J ⊆ I | all sums in the following expression are direct

sums: N +
∑
i∈J

Si}

= {J ⊆ I | N ∩
∑
i∈J

Si = {0} ∧ [Sj ∩ (N +
∑

i∈J,i6=j

Si) = {0} ∀j ∈ J ]}.

Applying Zorn’s lemma (exercise: check that the hypotheses are satisfied), we
find a maximal element J of S. Note that by choice of J the sum N+

∑
i∈J Si

is direct, i.e., equal to N ⊕
⊕

i∈J Si. In particular we now only have to prove
that N +

∑
i∈J Si = M to get 3.

35
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Assume N +
∑

i∈J Si (M . Then there is k ∈ I such that Sk 6⊆ N +
∑

i∈J Si.
It follows:

(N +
∑
i∈J

Si) ∩ Sk ( Sk, and thus

(N +
∑
i∈J

Si) ∩ Sk = {0}

since Sk is simple.
This means that the sum N +

∑
i∈J∪{k} Si is direct, contradicting the choice

of J .

The case N = {0} yields M =
⊕

i∈J Si.

3. ⇒ 2.: With start by proving the following.
Claim: Any non-zero cyclic (=generated by one element only, so of the form
Ra for some a ∈M) submodule of M contains a simple submodule.
Proof of the claim: The map φ : R→ Ra, r 7→ ra is a module homomorphism
from the left R-module R to the left R-module Ra. Its kernel is a left ideal of
R, which is then contained in a maximal left ideal L of R. Then φ(L) = La
is a maximal submodule of Ra (easy exercise), and therefore the quotient
module Ra/La is simple (easy exercise again). We now use the hypothesis:
By 3. La is a direct summand in M , i.e., there is a submodule N of M such
that M = La⊕N . It follows easily that Ra = La⊕ (Ra ∩N), which yields
Ra∩N ∼= Ra/La as R-module, so Ra∩N is simple. End of the proof of the
claim.

Let now N be the sum of all simple submodules of M . Then M = N⊕N ′ for
some submodule N ′ of M . We check that N ′ = {0}: Otherwise N ′ contains a
cyclic submodule of M (take any a ∈ N \{0} and consider Ra). By the above
claim, N then contains a simple submodule S, so S ⊆ N , which contradicts
N ∩N ′ = {0}.

Proposition 3.3. 1. A direct sum of semisimple R-modules is semisim-
ple.

2. Every submodule of a semisimple R-module is semisimple.

3. Every quotient module of a semisimple R-module is semisimple.

Proof. Since it follows rather easily from proposition 3.2, we only present a
sketch of the proof.

1. This one is obvious.
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2. Use the (easy; exercise) fact that if M is a module and S, T and A are
submodules of M such that M = S ⊕ T and S submodule of A, then
A = S ⊕ (T ∩ A).

3. If M is semisimple and N is a submodule of M , then M = N ⊕ P for
some submodule P of M . P is semisimple by 2. and M/N ∼= P .

Definition 3.4. A ring R is called semisimple if every left R-module is
semisimple.

Remark 3.5. Every R-module is isomorphic to a quotient of a direct sum
of copies of the R-module R:

Let M be an R-module. Then the map f :
⊕

m∈M R → M , (rm)m∈M 7→∑
m∈M rm · m is a surjective morphism of R-module (observe that the sum

makes sense, since by definition of
⊕

m∈M R only finitely many of the el-
ements in the tuple (rm)m∈M are non-zero, so it is a finite sum). By the
isomorphism theorem for modules, we get

⊕
m∈M R/ ker f ∼= M .

Proposition 3.6. For a ring R, the following statements are equivalent:

1. R is semisimple.

2. The left R-module R is semisimple.

3. R is a direct sum of minimal left ideals.

4. R is a direct sum of finitely many minimal left ideals.

Proof. 1. ⇒ 2. Clear.
2. ⇒ 1. By proposition 3.3, since every left R-module is a isomorphic to a
quotient of a direct sum of copies of R (by remark 3.5).
2. ⇒ 3. and 4. By definition of semisimplicity, R is a direct sum of simple
submodules, and a simple submodule of R is a minimal left ideal of R. So
R =

⊕
i∈I Li, where the Li are minimal left ideals of R. But such a direct sum

is always finite. Indeed, consider the element 1 ∈ R. We have 1 =
∑

j∈J ei,
where J is a finite subset of I and ej ∈ Lj, for every j ∈ J .
Consider now x ∈ Lk, for some k 6∈ J . Then x · 1 = x, i.e.,

∑
j∈J xej = x.

Since x ∈ Lk and xej ∈ Lj, the fact that the Li are in direct sum gives us
x = 0, so Lk = {0} for every k 6∈ J .

Be careful: There is no obvious direct link between simple and semisimple
rings. The simple condition is about 2-sided ideals, while the semisimple con-
dition is about minimal left ideals (or minimal right ideals, cf. Remark 3.17).

We have actually seen some semisimple rings:
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Proposition 3.7. Let D be a division ring and let n ∈ N. Then Mn(D) is
a direct sum of minimal left ideals (and thus is semisimple).

Proof. Let Li be the set of matrices in Mn(D) whose entries are zero outside
the ith column. Li is a left ideal of Mn(D) and R = L1 ⊕ · · · ⊕ Ln. That
L1, . . . , Ln are minimal ideals is left as exercise (show that if I is an ideal
that is included in L1 and I 6= {0}, then I = L1).

Exercise 3.8. Let R be a ring and let I, J be left ideals of R such that
R = I ⊕ J . Then there are two idempotents e, f ∈ R such that

I = Re, J = Rf, 1 = e+ f.

(An element x in a ring is called an idempotent if x2 = x.)
Hint: Start by writing 1 = e+ f with e ∈ I and f ∈ J .

3.2 The structure of semisimple rings

Proposition 3.9. Let {Ri}i∈I be a nonempty family of rings and let
∏

i∈I Ri

be the direct product of the abelian groups (Ri,+), i ∈ I.

1.
∏

i∈I Ri is a ring, with product defined by (ai)i∈I(bi)i ∈ I = (aibi)i∈I . If
1i denotes the identity of Ri (for i ∈ I), then (1i)i∈I is the identity of∏

i∈I Ri;

2. If Ri is commutative for every i ∈ I, then
∏

i∈I Ri is commutative;

3. For each k ∈ I the canonical projection πk :
∏

i∈I Ri → Rk given by
(ai)i∈I 7→ ak is a surjective morphism of rings.

Proof. Exercise.

Definition 3.10. The ring
∏

i∈I Ri defined in proposition 3.9 is called the
(direct) product of the rings Ri, i ∈ I.

Proposition 3.11. Let R1, . . . , Rn (for some n ∈ N) be semisimple rings.
Then

∏n
i=1Ri is semisimple.

Proof. Exercise.

Remark. Using proposition 3.7 we then see that if D1, . . . , Dn are division
rings and k1, . . . , kn ∈ N, then Mk1(D1)× · · · ×Mkn(Dn) is semisimple. We
will see in theorem 3.16 that the converse also holds.
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Let A1, . . . , Am, B1, . . . , Bn be R-modules and let A =
⊕m

i=1Ai, B =⊕n
j=1Bj. We describe the morphisms of R-modules φ : B → A.

For j = 1, . . . , n let λj be the canonical inclusion of Bj into
⊕n

`=1B`.
For i = 1, . . . ,m let πi be the canonical projection from

⊕m
`=1A` onto Ai.

Let x ∈
⊕n

j=1Bj and write it as x = x1 + · · · + xn with xj ∈ Bj for
j = 1, . . . , n. Since φ is R-linear, we have φ(x) = φ(x1) + · · · + φ(xn). In
other words φ is uniquely determined by φ ◦ λ1, . . . , φ ◦ λn.

Now, each morphism φ ◦ λj has values in
⊕m

i=1Ai, so is uniquely deter-
mined by its m coordinates in A1, . . . , Am. In other words, φ ◦ λi is uniquely
determined by π1 ◦ φ ◦ λj, . . . , πm ◦ φ ◦ λj.

We then just proved that φ is uniquely determined by the collection of
morphisms of R-modules φij = πi ◦φ◦λj : Bj → Ai. We sum it up and prove
a bit more in the next proposition.

Proposition 3.12. With the notation introduced since definition 3.10:
There is a bijection between morphisms of R-modules φ :

⊕n
j=1Bj →

⊕m
i=1Ai

and m×n matrices (φij)i=1,...,m j=1,...,n of homomorphisms of R-modules φij :
Bj → Ai.

Moreover, if φ′ :
⊕n

j=1Bj →
⊕m

i=1Ai and if ψ :
⊕`

k=1Ck →
⊕n

j=1Bj are
morphisms of R-modules, then

1. the matrix corresponding to φ + φ′ is the sum of the matrices corre-
sponding to φ and φ′;

2. the matrix corresponding to φ ◦ ψ is the product of the matrices corre-
sponding to φ and ψ.

Proof. The first part was proved before the statement of the proposition,
and the part concerning the sum is obvious. We then only check the last
statement.
Let µk be the canonical injection from Ck to

⊕`
i=1Ci and let pj be the

canonical projection from
⊕n

`=1B` onto Bj. Since
∑n

j=1 λj ◦pj is the identity
on
⊕n

j=1Bj we have

πi ◦ φ ◦ ψ ◦ µk = πi ◦ φ ◦ (
n∑
j=1

λj ◦ pj) ◦ ψ ◦ µk =
n∑
j=1

φij ◦ ψjk.

Remark. What happens if A = Rn and B = Rn?

Then a morphism of R-modules φ : B → A corresponds to an m×n matrix
of elements of EndRR. By theorem 2.20, we know that EndRR ∼= Rop. By
proposition 3.12 we then have EndR(Rn) ∼= Mn(Rop).
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Corollary 3.13. Let S be a simple R-module and let D = EndR S. Then
EndR S

n ∼= Mn(D), for all n ∈ N (Sn is the direct sum of n copies of S).

Proposition 3.14. Let R be a semisimple ring, written R = I1 ⊕ · · · ⊕ In
with I1, . . . , In minimal left ideals (see proposition 3.6). Then every simple
R-module is isomorphic to one of I1, . . . , In.

Proof. Let S be a simple R-module. We have S ∼= HomR(R, S), from which
follows HomR(R, S) 6= {0}. Since R ∼= I1 ⊕ · · · ⊕ Ik, by proposition 3.12
we know HomR(R, S) ∼= HomR(I1, S)× · · · ×HomR(In, S), so this last prod-
uct of rings is non-zero. It means that there is j ∈ {1, . . . , n} such that
HomR(Ij, S) 6= {0}. Since both Ij and S are simple R-modules, the only
morphisms between them are the zero morphism and isomorphisms. So Ij
and S are isomorphic.

Proposition 3.15. Let S1, . . . , Sk be simple R-modules, and let n1, . . . , nk ∈
N. Assume that S1, . . . , Sk are pairwise non isomorphic. Let M = Sn1

1 ⊕
· · · ⊕ Snk

k and let Di be the division ring EndR Si for i = 1, . . . , k.
Then EndRM ∼= Mn1(D1)× · · · ×Mnk

(Dk).

Proof. By proposition 3.12, EndRM is isomorphic to a ring of k×k matrices
of the form (fij)1≤i,j≤k, where fij : S

nj

j → Sni
i is a morphism of R-modules.

If i 6= j, by proposition 3.12 again: fij is represented by a matrix of
morphisms of R-modules from Sj to Si. Since both Sj and Si are simple R-
modules, the only morphisms of R-modules between them are isomorphisms
or the zero map. Since Sj and Si are not isomorphic by hypothesis, fij is the
zero map (whenever i 6= j).

It follows that the matrix (fij)1≤i,j≤k is a diagonal matrix, whose diagonal
entries are in EndR S

ni
i . So

EndRM ∼= EndR S
n1
1 × · · · × EndR S

nk
k ,

and using corollary 3.13 we obtain the result.

Theorem 3.16 (Wedderburn-Artin). A ring R is semisimple if and only
if it is isomorphic to a direct product Mn1(D1) × · · · ×Mnk

(Dk), for some
k, n1, . . . , nk ∈ N and some division rings D1, . . . , Dk.

Proof. Let R be a semisimple ring. By proposition 3.6

R = I1 ⊕ · · · ⊕ Ik,

where the I` are minimal left ideals of R, and in particular simple R-modules
of R. Regrouping together the R-modules Ii that are isomorphic to each
other we obtain

R ∼= Sn1
1 ⊕ · · · ⊕ S

n`
` ,
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where S1, . . . , Sn are pairwise non isomorphic simple R-modules.
It follows, by proposition 3.15:

EndRR ∼= Mn1(∆1)× · · · ×Mn`
(∆`),

for some division rings ∆1, . . . ,∆`. Finally, since EndRR ∼= Rop and (Rop)op ∼=
R we obtain

R ∼= (Mn1(∆1)× · · · ×Mn`
(∆`))

op

∼= Mn1(∆1)
op × · · · ×Mn`

(∆`)
op

∼= Mn1(∆
op
1 )× · · · ×Mn`

(∆op
` ).

Remark 3.17. We defined semisimple rings in terms of left modules, simple
(left-)submodules, and minimal left ideals, so we could call it left-semisimple.
We can similarly define right-semisimple by using right R-modules, sim-
ple right-submodules, and minimal right ideals, and we can re-do this whole
chapter for this notion of right-semisimple, and we will get the exact same
Wedderburn-Artin theorem, which does not depend on “left” or “right”. So
these two notions of left and right-semisimple ring coincide, which is why we
just say semisimple

Corollary 3.18. Every semisimple ring is left Artinian, left Noetherian,
right Artinian, right Noetherian.

Proof. By proposition 3.6 R = I1 ⊕ · · · ⊕ Ik, where k ∈ N and I1, . . . , Ik are
minimal left ideals of R, i.e., minimal submodules of the left R-module R. It
follows easily that

{0} ( I1 ( I1 ⊕ I2 ( · · · ( I1 ⊕ · · · ⊕ Ik−1 ⊕R

is a composition series for R. We can now apply theorem 2.29 to the left
R-module R to get the conclusion about left-Noetherian and left-Artinian.

The statements about right Artinian and right Noetherian follow from
Remark 3.17: redoing the same argument with “right” semisimple will get
that a semisimple ring is right Artinian and right Noetherian.

3.3 The structure of simple rings

Lemma 3.19. Let R be a ring and let f : R → R be a morphism of R-
modules. If I is a minimal left ideal of R, then f(I) is either {0} or a
minimal left ideal of R.
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Proof. Assume that f(I) 6= {0} and let J be a left ideal of R such that J ⊆
f(I). Then f−1(J)∩I is a left ideal of R included in I. So f−1(J)∩I = {0} or
f−1(J)∩ I = I. In the first case J = {0} and in the second case I ⊆ f−1(J),
so J = f(I).

Lemma 3.20. Let R be a ring with a minimal left ideal L, and let S be the
sum of all minimal left ideals of R. Then S is a 2-sided ideal of R.

Proof. By definition, S is a left ideal of R, so we only have to check that
if x ∈ S and r ∈ R, then xr ∈ S. Again by definition of S, we have
x = a1 + · · · + at where each as belongs to some minimal left ideal Is for
s = 1, . . . , t. Since xr = a1r+ · · ·+ atr, we will be done if we show that each
asr is zero or belongs to a minimal left ideal of R.

But asr ∈ Isr, which is either 0 or a minimal left ideal of R by Lemma 3.19
(use the morphism of R-modules f(z) = zr from R to R).

Remark. By definition of semisimple, the ideal S in the previous lemma is
the largest “semisimple part” of R. Obviously, we will have S = R when R
is semisimple (cf. Proposision 3.6).

The ideal S is often called the socle of the ring R.

Theorem 3.21. (Wedderburn-Artin) Let R be a simple ring. The following
are equivalent:

1. R is left Artinian;

2. R is semisimple;

3. R has a minimal left ideal;

4. R is isomorphic to Mn(D) for some n ∈ N and some division ring D.

Proof. We first record the implications that have already been proved:

� 1 implies 3 follows from Proposition 2.24 (even for a general ring R).

� 2 implies 3 by Proposition 3.6

� 2 implies 1 by Corollary 3.18.

The equivalence of 2 and 4 is clear by Theorem 3.16 (indeed, if R is a
product of more than one matrix ring, then it will have proper 2-sided ideals,
for instance Mn1(D1)× {0} × · · · × {0}, which is impossible).

Finally, 3 implies 2: Let S be the sum of all minimal left ideals of R. It
is a 2-sided ideal of R by Lemma 3.20, and is non-zero since R has at least
one minimal left ideal. Therefore S = R, and the conclusion follows since S
is semisimple by definition.
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Corollary 3.22. Let R be a finite ring. Then R is simple if and only if R
is isomorphic to Mn(F ) for some finite field F and some integer n ∈ N.

Proof. It follows immediately from Theorem 3.21 and Theorem , since R,
and thus D, is finite.

Observe that, by Theorem 3.21, a simple ring is semisimple if and only if
it is Artinian. And there are simple rings that are not Artinian, hence not
semisimple. An example can be obtained as follows:

If R is a ring and M is a maximal ideal of R, then R/M is simple. If we
can find such an R and M such that R/M is not Artinian, we will have that
R/M is not semisimple. Let K be a field and let V be an infinite-dimensional
K-vector space. Let R = EndK V . Then

M := {f ∈ R | dim(Im f) is finite}

is a maximal ideal of R, and R/M is not Artinian. Hence R/M is simple but
not semisimple. (Exercise, it might end up in one of the exercise sheets.)

We have seen that simple Artinian rings are of the form Mn(D) for some
n ∈ N and some division ring D. We conclude this chapter by some results
on such rings and their simple modules.

Let V = Dn. Then V is a left R-module with the action

R× V → V, (A, v) 7→ A · v.

We have

Proposition 3.23. 1. V is a simple R-module;

2. Any simple R-module is isomorphic to V .

Proof:

1. Let M be a non-zero R-submodule of Dn, and let m ∈ M , m 6= 0.
Then R ·m ⊆ M , but R ·m = Dn (simple linear algebra exercise). So
M = Dn.

2. Let {e1, . . . , en} be any basis of Dn and define

ξ : R→ V ⊕ · · · ⊕ V, A 7→ (A · e1, . . . , A · en).

It is not very hard to check that ξ is an isomorphism of R-modules
(linear algebra exercise).
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Let M be a simple R-module, and let m ∈ M , m 6= 0. We define
λ : R→M , λ(r) = rm, and we define

τ : V ⊕ · · · ⊕ V ξ−1

→ R
λ→M.

We obtain in this way n morphism of R-modules τi (for i = 1, . . . , n):

V
id→ 0⊕ · · · ⊕ 0⊕ V ⊕ 0⊕ · · · ⊕ 0→ R

λ→M

(where the second map is the restriction of ξ−1), and we have τ =
τ1 + · · ·+ τn.

Since τ 6= 0, one of the τi is non zero, say τ1 6= 0. It follows that τ1 is
an isomorphism since both V and M are simple R-modules. �

Lemma 3.24. Let R ∼= Mn(D) with notation as above. Then and

1. V and Mn(D) can be seen as an R-modules;

2. V is simple as R-module;

3. the R-modules R and V ⊕ · · · ⊕ V are isomorphic;

4. Dop ∼= EndR V .

Proof. Let λ : R → Mn(D) be an isomorphism. Using this isomorphism,
every Mn(D)-module M can be seen as an R-module by defining the product:

r ·m = λ(r) ·m,

for r ∈ R and m ∈ M . A direct simple verification shows that the R-
submodules of M are exactly the same as the Mn(D)-submodules of M . The
first two statements follow immediately from this.

For the third statement, a direct verification shows that the map λ is an
isomorphism of R-modules from R to Mn(D), and the result follows since
Mn(D) ∼= V ⊕ · · · ⊕ V (as Mn(D)-modules, but the definition of direct sum
only depends on the sum, so it is also statisfied if we look at them as R-
modules).

We check the final statement. We must associate, to every element of
Dop, an element of EndR V . Let d ∈ Dop, and define

µd : V → V, µd(v) = v · d.

We have µd(v1+v2) = µd(v1)+µd(v2) and, for r ∈ R, µd(r ·v) = µd(λ(r)·v) =
λ(r) · v · d = λ(r) · µd(v) = r · λd(v), so λd ∈ EndR V . We only have to show
that the map

µ : D → EndR V, d 7→ µd
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is an isomorphism of rings, i.e., that it is a morphism: µd1+d2 = µd1 + µd2 ,
µd1×opd2 = µd1 ◦ µd2 , and µ1 = Id (this is left as an exercise), and that it is
bijective. The injectivity is easy, for the surjectivity, let f ∈ EndR V . If we
write

f(


1
0
...
0

) =


d
∗
...
∗

 ,

then (written for R = Mn(D) to simplify the notation; for the general case,
the map λ also comes in):

f(

a1...
an

) = f(

a1 0 · · · 0
...

... · · · ...
an 0 · · · 0




1
0
...
0

)

=

a1 0 · · · 0
...

... · · · ...
an 0 · · · 0

 f(


1
0
...
0

)

=

a1 0 · · · 0
...

... · · · ...
an 0 · · · 0


d∗

...


=

a1d...
and


= µd(

a1...
an

).

Proposition 3.25. If D,D′ are division rings and n, n′ ∈ N then Mn(D) ∼=
Mn′(D

′) if and only if n = n′ and D ∼= D′.

Proof. Let V ′ = (D′)n. Using the previous lemma, we get that V and V ′ are
simple R-modules, and that

V ⊕ · · · ⊕ V ∼= V ′ ⊕ · · · ⊕ V ′



46 CHAPTER 3. SEMISIMPLE MODULES AND RINGS

as R-modules. The direct sum on the left-hand side gives a composition series
of length n, while the direct sum on the right-hand side gives a composition
series of length n′. Therefore n = n′.

Since R is simple and V , V ′ are simple R-modules, we get by Proposi-
tion 3.23 that V and V ′ are isomorphic R-modules. It follows that EndR V ∼=
EndR V

′ and we get from Lemma 3.24 that D ∼= D′.



Chapter 4

The Jacobson radical

4.1 Definition and first properties

Definition 4.1. The Jacobson radical of a ring R is the intersection of
all maximal left ideals of R:

J(R) =
⋂
{M |M maximal left ideal ofR}.

In the next few results we will see in particular that this definition is
left-right symmetric, i.e., that J(R) is also equal to the intersection of all the
maximal right ideals of R.

We first observe that the definition makes sense:

Lemma 4.2. Let R be a ring. Every left (resp. right, 2-sided) ideal of R is
contained in a maximal left (resp. right, 2-sided) ideal of R. In particular,
R contains at least one maximal left (resp. right, 2-sided) ideal.

Proof. (For left ideals) Let I be a left ideal of R, and consider:

E = {J | J left ideal of R, J ⊇ I, J 6= R}
= {J | J left ideal of R, J ⊇ I, 1 6∈ J}.

E, with the order given by the inclusion, is a partially ordered set. Apply
Zorn’s lemma to find a maximal element of E.

Definition 4.3. Let M be an R-module, and let B ⊆ M . The (left) anni-
hilator of B in R is:

AnnRB = {r ∈ R | rb = 0 ∀b ∈ B}.

This is a left ideal of R (easy exercise).
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Proposition 4.4. Let M be an R-module, and let N be a submodule of M .
Then AnnRN is a 2-sided ideal of R.

Proof. We already know that it is a left ideal, so we only have to show that
for every a ∈ AnnRN and r ∈ R, ar ∈ AnnRN . Let m ∈ N . Then
(ar)m = a(rm) = 0 since rm ∈ N (N is a submodule) and a ∈ AnnRN .

Lemma 4.5. Let R be a ring. For y ∈ R the following are equivalent:

1. y ∈ J(R).

2. 1− xy is left-invertible for every x ∈ R.

3. y.M = {0} for every simple R-module M .

4. y ∈
⋂
{AnnRM |M simple R-module}.

Proof. We first remark that 4 is simply a reformulation of 3:

3⇔ y ∈
⋂
{AnnRM | M simple R-module }.

We consider now the other equivalences.

1 ⇒ 2. Suppose 1 − xy is not left-invertible, for some x ∈ R. Define I =
R.(1− xy). I is different from R since 1 6∈ I, and I is a left ideal. So I ⊆ L
for some L maximal left ideal of R.
We have 1− xy ∈ I ⊆ L, i.e., 1− xy = ` ∈ L. But y ∈ L by hypothesis, and
then xy ∈ L. This implies 1 = `+ xy ∈ L, and then L = R, a contradiction.

2 ⇒ 3. Assume there exists a simple R-module M such that yM 6= {0}. In
particular there exists m ∈M such that ym 6= 0.
Consider R.(ym), the R-submodule generated by ym. It is nonzero since
ym 6= 0. Since M is a simple R-module, we get R.(ym) = M .
In particular there exists r ∈ R such that rym = m, which implies (1 −
ry)m = 0. But 1− ry is left-invertible by hypothesis, and if we multiply this
equation on the left by its left-inverse, we have m = 0, a contradiction.

3 ⇒ 1. Let L be a maximal left ideal of R. R/L is an R-module (with
product R × R/L → R/L, (r, a + L) 7→ ra + L), which is simple (exercise:
it is because L is a maximal left ideal of R, i.e., a maximal left submodule
of the R-module R). By hypothesis we have y.R/L = {0}, and in particular
y(1 + L) = 0, i.e., y + L = 0, which means y ∈ L.

Corollary 4.6. Let R be a ring. Then:

J(R) =
⋂
{AnnRM |M simple R-module}.

In particular J(R) is a 2-sided ideal of R.
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Lemma 4.7. Let R be a ring, and let y ∈ R. The following are equivalent:

1. y ∈ J(R).

2. ∀x, z ∈ R 1− xyz ∈ U(R).

Proof. 2 . ⇒ 1 . By taking z = 1, we have 2 . from lemma 4.5, which means
(by part 1 . of lemma 4.5) y ∈ J(R).
1 . ⇒ 2 . Let y ∈ J(R) and x, z ∈ R. Since J(R) is an ideal, yz ∈ J(R).
So by lemma 4.5, 1 − xyz is left invertible, so there exists u ∈ R such that
u(1− xyz) = 1 (?).
Since J(R) is an ideal, xyz ∈ J(R). By 2 . in lemma 4.5, 1 + u(xyz) is left-
invertible.
But (?) gives u(xyz) = u − 1, so we have 1 + u(xyz) = u is left-invertible.
This implies u ∈ U(R) since u is also right invertible by (?). This suffices to
show that 1− xyz = u−1 and then belongs to U(R) (since for an element of
U(R) the right and left inverses coincide, and are in U(R)).

Remark. From lemma 4.5 and 4.7 we have:

∀x ∈ R 1− xy is left invertible
⇓

∀x, z ∈ R 1− xyz is invertible,

which looks much stronger.

Corollary 4.8. J(R) is the intersection of all maximal right ideals of R.

Proof. It relies on the fact that second condition in Lemma 4.7 does not
involve left or right:

Let J ′(R) be the intersection of all maximal right ideals of R. We can
re-write Lemma 4.5 for J ′(R) instead of R, and we will obtain that y ∈ J ′(R)
if and only if for every x, z ∈ R we have 1− xyz ∈ U(R).

Corollary 4.9. J(R) is the largest left ideal I ⊆ R such that 1 + I ⊆ U(R).
(In the sense that any such ideal is included in J(R).)

Proof. Let I be a left ideal such that 1 + I ⊆ U(R). Let y ∈ I and x ∈ R.
Since I is a left ideal, −xy ∈ I, and then, by hypothesis, 1 − xy ∈ U(R).
Since this is true for every x ∈ R we have y ∈ J(R) by Lemma 4.5. This
proves I ⊆ J(R).

Definition 4.10. An element a of a ring R is nilpotent if an = 0 for some
n ∈ N.
A left (reps. right, two-sided) ideal I of R is nil if every element of I is
nilpotent; I is nilpotent if In = {0} for some n ∈ N.
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An easy example of nilpotent element can be found in M2(R) with a =(
0 1
0 0

)
, because a2 = 0.

Remark. We have

In = I.I. · · · .I (n times)

= {
m∑
i=1

ai,1. · · · .ai,n | m ∈ N, ai,k ∈ I}

(see definition page 11).

This gives:

I nilpotent
def⇔ ∃n ∈ N In = {0}
⇔ ∀a1, · · · , an ∈ I a1. · · · .an = 0

⇒ ∀a ∈ I an = 0.

So I nilpotent implies I nil. (The converse is false! See exercise sheets.)

Theorem 4.11. Let R be a ring and let I be a nil left ideal of R. Then
I ⊆ J(R).

Proof. Let a ∈ I. a is nilpotent and there exits n ∈ N such that an = 0.
Define r = −a+ a2 − a3 + · · ·+ (−1)n−1an−1. Then:
r + a+ ra = a2 − a3 + · · ·+ (−1)n−1an−1 − a2 + a3 + · · ·+ (−1)n−2an−1

= 0.
This implies (1 + r)(1 + a) = 1 + r + a + ra = 1. We also get in a similar
way: (1 + a)(1 + r) = 1. We have proved 1 + a ∈ U(R) for every a ∈ I, i.e.,
1 + I ⊆ U(R), and by corollary 4.9 we get I ⊆ J(R).

Proposition 4.12. If R is a left Artinian ring (i.e., satisfies the descending
chain condition on left ideals), then J(R) is nilpotent.

Proof. Let J = J(R) and consider:

J ⊇ J2 ⊇ J3 ⊇ · · ·

It is a descending chain of left ideals, and since R is left Artinian, there exists
k ∈ N such that J i = Jk for every i ≥ k.
We prove that Jk = {0} (which will give J nilpotent):
Suppose Jk 6= {0}. Then J2k = Jk 6= {0}. Consider:

E = {L left ideal of R | JkL 6= {0}},



4.2. LINKS WITH SEMISIMPLICITY 51

with the order given by the reversed inclusion (i.e., L1 ≥ L2 if and only if
L1 ⊆ L2). E is nonempty because Jk ∈ E. Using that R is left Artinian, we
can verify that E satisfies the hypothesis of Zorn’s lemma (see the proof of
proposition 2.24), and by applying it we get a minimal element I0 of E.
Since I0 ∈ E, we have JkI0 6= {0} and there exists a ∈ I0, a 6= 0, such that
Jka 6= {0}.
Jka is a left ideal of R and Jka ∈ E (since Jk(Jka) = J2ka = Jka 6= {0}).
But we also have Jka ⊆ I0 since a ∈ I0 and I0 is a left ideal. Since I0 is
minimal in E, this implies Jka = I0.
Using a ∈ I0, we get r ∈ Jk such that ra = a.

We have r ∈ Jk ⊆ J , so by lemmas 4.5 and 4.7, 1− r ∈ U(R). Let α ∈ R be
such that α(1− r) = 1. We then have α(1− r)a = 1.a = a, but we also have:

α(1− r)a = (α− αr)a
= αa− αra
= αa− αa
= 0.

This gives a = 0, a contradiction.

Corollary 4.13. If R is a left Artinian ring then:

1. If I is a nil left ideal of R, then I is nilpotent.

2. J(R) is the unique maximal nilpotent left ideal of R.

Proof. It is an immediate consequence of theorem 4.11 and proposition 4.12.

Remark. Proposition 4.12 and corollary 4.13 apply in particular to finite
rings, since a finite ring as necessarilly left Artinian.

4.2 Links with semisimplicity

Theorem 4.14. Let R be a ring. The following statements are equivalent:

1. R is semisimple.

2. R is left Artinian and J(R) = {0}.

3. R is left Artinian and has no nonzero nilpotent ideal.
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Proof. The equivalence of 2 and 3 follows at once from proposition 4.12 and
corollary 4.13.
“1⇒ 2” Assume R is semisimple. Then R is left Artinian by Corollary 3.18.

Consider now the left ideal J(R). Since J(R) is also an R-submodule of
R, there is a submodule P of R such that R = J(R) ⊕ P as R-module. By
exercise 3.8, there are idempotents e, f ∈ R such that e ∈ J(R), f ∈ P ,
1 = e + f , J(R) = Re and P = Rf . Since e ∈ J(R), by proposition 4.5,
f = 1 − e has a left inverse u ∈ R. Since f is an idempotent (f 2 = f) we
obtain

1 = uf = uf 2 = (uf)f = f,

from which follows e = 0, and therefore J(R) = J(R)e = {0}.
“2⇒ 1” We first show that if I is a minimal left ideal of R, then I is a direct
summand of R:
Since I 6= {0} we have I 6⊆ J(R). Since J(R) is the intersection of all maxi-
mal left ideals of R, there is a maximal left ideal L of R not containing I.
Since I is minimal, it is a simple left R-module, so I ∩ L is either {0} or I.
Thesecond possibility means I ⊆ L, which is impossible. So I ∩ L = {0}.
The maximality of L gives R = I + L, and so we have R = I ⊕ L.
We now use the Artinian property to repeat this process until we get the
whole ring R:
Choose a minimal left ideal I1 of R (it exists since R is Artinian, see propo-
sition 2.24). As we just saw, R = I1⊕B1 for some left ideal B1. In the same
way, B1 contains a minimal left ideal I2 of R, and B1 = I2⊕B2, where B2 is
a left ideal of R. It follows R = I1 ⊕ I2 ⊕B2.
We continue this process, which must stop at some point because R is left
Artinian and the sequence of left ideals

B1 % B2 % · · ·

is strictly decreasing. Since the only way for this sequence to stop decreasing
it for some Bk to be equal to {0}, we get k ∈ N such that Bk = {0}, which
gives

R = I1 ⊕ I2 ⊕ · · · ⊕ Ik,

proving that R is semisimple.

The Jacobson radical can be used to investigate properties of left Artinian
rings: If R is left Artinian, then so is R/J(R). But J(R/J(R)) = {0} (see
exercise sheets), so R/J(R) is semisimple, which means that we have a good
description of it. We can then use it to get results about R. The following
three results are examples of this.
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Proposition 4.15. Let R be a left Artinian ring. Then a left R-module M
is semisimple if and only if J(R) ·M = {0}.
Proof. Let J = J(R). By Corollary 4.6 we have JS = {0} for every simple
left R-module S, since J ⊆ AnnR S. It yields JM = {0} for every semisimple
left R-module M .

Conversely, assume JM = {0}. Then the product R/J × M → M ,
(r + J,m) 7→ rm is well-defined and defines a structure of R/J-module on
M . Moreover the R/J-module M and the R-module M have the same sub-
modules (easy verification).

Now R/J is still left Artinian (easy) and we have J(R/J) = {0} (exer-
cise). By theorem 4.14 we know that R/J is semisimple. In particular M
is semisimple as R/J-module, i.e., every R/J-submodule of the R/J-module
M is a direct summand. But it is easy to check that the R/J-submodules of
M are exactly the R-submodules of M (look at the definition of the product
by elements of R/J), so every R-submodule of the R-module M is a direct
summand, i.e., M is semisimple.

Theorem 4.16 (Hopkins-Levitzki). Let R be a left Artinian ring. Then for
a R-module M the following properties are equivalent:

1. M is Noetherian.

2. M is Artinian.

3. M is of finite length.

Proof. Step 1: If M is semisimple 1, 2 and 3 are all equivalent, since a
Noetherian or Artinian module cannot be the direct sum of infinitely many
simple submodules.

Step 2: Consider now the general case, and let J = J(R). Since R
is left Artinian, there is n ∈ N such that Jn = {0} (J(R) is nilpotent, see
proposition 4.12). Let M be Noetherian (or Artinian). We have a descending
sequence of submodules of M :

M ⊇ JM ⊇ · · · ⊇ JnM = {0}.

For every i ∈ {1, . . . , n− 1}, J iM is Noetherian (or Artinian) and therefore
J iM/J i+1M is also Noetherian (or Artinian). But J · (J iM/J i+1M) = 0 so
by proposition 4.15, the R-module J iM/J i+1M is semisimple. Hence by Step
1 every J iM/J i+1M has a composition series, and then M has a composition
series.

Corollary 4.17 (Hopkins). Every left Artinian ring is left Noetherian.

Proof. Take M = R in theorem 4.16.
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Appendix A

Products of rings

Let R and S be rings. We define the (direct) product of the rings R and S,
denoted R× S as follows:

� R × S = {(r, s) | r ∈ R, s ∈ S} (so, as a set, R × S is simply the
cartesian product of R and S);

� 0R×S = (0R, 0S) (we will simply write 0 = (0, 0));

� 1R×S = (1R, 1S) (we will simply write 1 = (1, 1));

� For all r1, r2 ∈ R and s1, s2 ∈ S:

(r1, r2) + (s1, s2) = (r1 + s1, r2 + s2),

(r1, r2) · (s1, s2) = (r1 · s1, r2 · s2).

It is quite easy to check that R× S is itself a ring.
More generally, if {Ri}i∈I is a collection of rings (which can be infinite),

we define the product of the Ri to be

�

∏
i∈I Ri = {(ri)i∈I × ri ∈ Ri for every i ∈ I} (so, as a set,

∏
i∈I Ri is

simply the cartesian product of the Ri, i ∈ I);

� 0 = (0Ri
)i∈I ;

� 1 = (1Ri
)i∈I ;

� For all (ai)i∈I , (bi)i∈I ∈
∏

i∈I Ri:

(ai)i∈I + (bi)i∈I = (ai + bi)i∈I ,

(ai)i∈I · (bi)i∈I = (ai · bi)i∈I .

Again, it is straightforward to check that
∏

i∈I Ri is a ring.
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Appendix B

Zorn’s lemma

B.1 The axiom of choice

Let {Ai}i∈I be a family of non-empty sets (with I also non-empty). We
would like to know if

∏
i∈I Ai 6= ∅.

The naive answer if to say that
∏

i∈I Ai is obviously not empty:
Since Ai 6= ∅, it contains some element ai. Then the element (ai)i∈I belongs
to
∏

i∈I Ai, which is therefore non-empty.

However, what this reasonning says is “we pick one element in each Ai”,
which leads to the following question: Can we really do it if I is infinite?
Obviously we cannot do it “by hand” if I is infinite. So accepting that∏

i∈I Ai is not empty means accepting the existence of some procedure that
chooses an element in each Ai, whithout necessarilly being able to describe
it explicitely.

The axiom of choice: The product of a non-empty familly of non-empty
sets is non-empty.

In this course, and in many other areas of mathematics, we will work
under the hypothesis that the axiom of choice is true. (It is actually possible
to make this choice. If you take a course on set theory, you will see that the
axiom of choice is consistent with the usual axioms of set theory, i.e. that you
can assume it holds. It means that it is possible to do mathematics under
the hypothesis that the axiom of choice holds. Some people however prefer
to avoid using it.)

There are several statements that are equivalent to the axiom of choice,
in the sense that you can prove them out of the axiom of choice, and that
you can prove the axiom of choice out of any of them. One of then is Zorn’s
lemma (see below), which we mostly use in this course to show the existence
of maximal ideals in rings.
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There are many other statements equivalent to the axiom of choice (for
instance the fact that every vector space has a basis). While the axiom
of choice itself and many of its equivalent statements seem natural enough,
some others are really counter-intuitive, and justify why some people try to
avoid using the axiom of choice.
Possibly the most famous example of such a counter-intuitive statement is
the Banach-Tarski paradox: Using the axiom of choice, it is possible to de-
compose a ball in R3 of radius 1 into 5 different pieces, which can then be
put back together by rotations and translations to give 2 balls of radius 1.
The “trick” is that these pieces are so complicated that they don’t have a
“volume” (more precisely, if you are curious, they are nonmeasurable, cf. any
course on measure theory or integration theory).

B.2 Zorn’s lemma

Definition B.1. A set X is called partially ordered if there is a relation
≤ on X such that, for every a, b, c ∈ X

1. (a ≤ b and b ≤ c)→ a ≤ c;

2. (a ≤ b and b ≤ a)→ a = b.

We also say that ≤ is a partial order on X.

X is totally ordered if X is partially ordered by ≤ and, for every a, b ∈ X,
a ≤ b or b ≤ a.
We also say that ≤ is a total order on X.

Example. 1. The usual order ≤ on R or Z is a total order.

2. Let S be a non-empty set and let X = P (S) the set of all subsets of S.
Let ≤ be the inclusion, i.e. for A,B ∈ X (which means A, B subsets
of S) we define A ≤ B if and only if A ⊆ B.
Then ⊆ is a partial order on X:
(A ⊆ B and B ⊆ C)⇒ A ⊆ C;
(A ⊆ B and B ⊆ A)⇒ A = B.
It is not in general a total order, because we can have subsets A, B of
S such that A 6⊆ B and B 6⊆ A.

3. More generally, any set of subsets is partially ordered by inclusion.

4. Similarly, we can consider on X = P (S) the reverse inclusion, i.e. we
define A ≤ B if and only if B ⊆ A. It is easy to check that the reverse
inclusion is also a partial order on P (S).
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5. A graphic representation that also gives plenty of examples.
We represent the elements of X by dots, and put edges between them
in such a way that

x ≤ y if and only if
there is a path constantly going up from x to y.

a

b

c

d

e

f

g

Figure B.1: A partial order on {a, b, c, d, e, f, g}

In this example we have a ≤ b, e ≤ c, f ≤ g. . .
But a 6≤ e, e 6≤ a, f 6≤ b. . .

Definition B.2. Let X be a partially ordered set and let a ∈ X.

1. (a) a is maximum (in X) if

∀x ∈ X x ≤ a

(a is greater than or equal to every element of X).

(b) a is minimum (in X) if

∀x ∈ X a ≤ x

(a is smaller than or equal to every element of X).

2. (a) a is maximal (in X) if

∀x ∈ X x ≥ a⇒ x = a

(there is no element larger than a).
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(b) a is minimal (in X) if

∀x ∈ X x ≤ a⇒ x = a

(there is no element smaller than a).

Note that a maximum element is always maximal, and that a minimum
element is always minimal.
If there is a maximum element, it is unique, and if there is a minimum element
it is unique.

Example. 1. In figure B.1: c and g are maximal. a and f are minimal.
There are no maximum or minimum elements.

2. In the following figure

a

b

c d

a is maximum, b, c and d are minimal. There are no minimum ele-
ments, and a is the unique maximal element.

In the figure

a

b

c

d

e
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a, c and e are maximal, and there are no maximum elements. d is
minimum (and minimal) and there are no other minimal elements.

Definition B.3. Let X be a partially ordered set and let C ⊆ X. C is called
a chain if C is totally ordered by the order from X. In other words:

∀a, b ∈ C a ≤ b or b ≤ a.

Theorem B.4 (Zorn’s lemma). Let X be a partially ordered set such that

1. X is not empty;

2. Whenever C is a chain in X, there is a ∈ X such that C ≤ a (i.e. for
every x ∈ C, x ≤ a).

Then X has at least one maximal element.

Remark. It can also be used to prove the existence of minimal elements,
because of the following observation:
If X is partially ordered by ≤, then X is also partially ordered by ≤′, where:

a ≤′ b if and only if b ≤ a.

B.2.1 Application: Every non-zero ring has a maximal
(proper) left ideal

Let R be a ring, R 6= {0}. Recall that a left ideal I of R is called maximal
if I 6= R and for every left ideal J of R we have

I ⊆ J ⇒ (J = I or J = R).

Let
X = {J ⊆ R | J left ideal of R, J 6= R}.

Since X consists of subsets of R, it is partially ordered by inclusion. Observe
that I is a maximal left ideal of R if and only if I is maximal in X for the
partial order ⊆.

Therefore, to prove the existence of a maximal ideal, we just need to
check the hypotheses of Zorn’s lemma.

1. To show that X is non-empty, we have to find an element of X, i.e. a
proper left ideal of R. The simplest one is the ideal {0}.

2. Let C be a chain in X, i.e. C = {Jk}k∈K such that, for every Jr, Js ∈ C,
Jr ⊆ Js or Js ⊆ Jr.
Let J ′ =

⋃
{Jk | k ∈ K}. It is easy to check (exercise) that J ′ is a
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left ideal of R. Moreover it is also a proper ideal of R (exercise again;
hint: a left (or right, or 2-sided) ideal is proper if and only if it does
not contain 1).
Since Jr ⊆ J ′ for every Jr ∈ C, the second hypothesis of Zorn’s lemma
is satisfied.

You can show in the same way that every non-zero ring has a maximal
right ideal, and a maximal 2-sided ideal.

The same kind of idea is used to show that every vector space has a basis,
by showing that every vector space contains a maximal linearly independent
subset, which is then a basis (Zorn’s lemma is only required for vector spaces
of infinite dimension). Actually the statement “every vector space has a
basis” is equivalent to Zorn’s lemma.



Appendix C

Maschke’s theorem

Let F be a field. Let us go back for one second to F [X] the ring of polynomials
with indeterminate X. Its elements are of the form∑

i∈N

aiX
i,

where the ai are in F and only a finite number of them are non-zero. In other
words, F [X] is the F -vector space with a basis labelled by the elements X i,
for i ∈ N.

It is turned into a ring by defining a product as follows

1. If i, j ∈ N, then X iXj = X i+j.

2. If a ∈ F and i ∈ N, then X ia = aX i.

3. The product is linear in each entry, so that

(
∑
i∈N

ai ·X i) · (
∑
j∈N

bj ·Xj) =
∑
i,j∈N

aibj ·X i+j.

We now do the same thing, but where we use the elements of a group as
indeterminates:

Let F be a field and let G be a group (written multiplicatively, with
identity element 1G). We denote by F [G] the vector space over F having a
basis labelled by the elements of G. It means that an element of F [G] has a
unique expression in the form ∑

g∈G

ag · g,

63
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where ag ∈ F and only a finite number of the coefficients ag are non-zero.
Equivalently, you can consider the elements of F [G] as polynomials where
the elements of G are used as the indeterminates.

The sum is defined in the natural way in both cases (and gives the same
results), and F [G], equipped with this sum, is an Abelian group.

We define a product on F [G] in 3 steps:

1. If g, h ∈ G, then the product of g by h is F [G] is the basis element /
indeterminate gh (product computed in G).

2. If a ∈ F and g ∈ G, then ag = ga.

3. The product in linear in each entry, so that

(
∑
g∈G

ag · g) · (
∑
h∈G

bh · h) =
∑
g,h∈G

agbh · (gh).

In other words: You compute the product as usual, using that the elements
of F and G commute, and you “regroup” the part in F and the part in G.
For instance:

(a1g1 + a2g2)(b1h1 + b2h2) = (a1b1)(g1h1) + (a1b2)(g1h2) + (a2b1)(g2h1)+

(a2b2)(g2h2).

So: It is very similar to how you compute with polynomials.

Definition C.1. With this sum and product, the set F [G] is a ring with
1 = 1F · 1G. The ring F [G] is called the group ring of G over F .

Remark C.2. Let R be a ring and let M be an R-module. Let N be a
submodule of M and let f : M → N be a morphism of R-modules such that
f is the identity on N (i.e., f(x) = x for every x ∈ N). Then M = N⊕ker f .

Indeed: If m ∈M , then m = f(x) + (x− f(x)), and a direct computation
shows that x − f(x) ∈ ker f (use that f(f(x)) = f(x) since f(x) ∈ N).
Furthermore, if x ∈ N ∩ ker f , then f(x) = 0 and also f(x) = 0, so x = 0.

Theorem C.3 (Maschke, 1898). Let F be a field and let G be a finite group.
If charF does not divide |G| then F [G] is a semisimple ring.

(Actually this implication is an equivalence, but we only prove one direc-
tion.)

Proof. We show that if V is an F [G]-module and V is an F [G]-submodule of
V , then W is a direct summand in V . It will show that every F [G]-module
is semisimple, i.e., that F [G] is semisimple.



65

We first observe that since F ⊆ F [G], V is also an F -vector space, and
W is a subspace of V . Therefore, there is a subspace W ′ of V such that
V = W ⊕W ′ as F -vector spaces. Let f : V → W be the projection with
kernel W ′. It is an F -linear map and the restriction of f to W is the identity.
We modify f to obtain a morphism of F [G]-modules as follows:

Define µ : V → V by

µ(v) =
1

|G|
∑
g∈G

g−1f(gv),

for every v ∈ V . (|G| is invertible in F by hypothesis.) Observe that f(gv) ∈
W . Since W is an F [G]-module we get g−1f(gv) ∈ W and

1

|G|
g−1f(gv) ∈ W .

Therefore µ is a map from V to W . Furthermore, if v ∈ W , we have

µ(v) =
1

|G|
∑
g∈G

g−1gv = v,

so that µ is the identity map on W .
Finally, µ is an F [G]-morphism: It is easy to check that µ(v + v′) =

µ(v) + µ(v′) and that µ is F -linear. So we still have to check that for h ∈ G
and v ∈ V , µ(hv) = hµ(v):

µ(hv) =
1

|G|
∑
g∈G

g−1f(ghv)

=
1

|G|
∑
g′∈G

hg′−1f(g′v)

(where g′ = gh)

= hµ(v).

We can now use Remark C.2 to conclude.

Using this result, what we learned about semisimpe rings can be used to
study groups. This is part of Group Reprensentation Theory.

Remark C.4. It is possible to show that if G is infinite, then F [G] is never
semisimple.
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