Problem sheet 9

1. Let R be a ring.

- (a) Let I be an ideal contained in J(R). Show that J(R/I) = J(R)/I.
- (b) Let $(R_i)_{i \in I}$ be a family of rings. Show that $J(\prod_{i \in I} R_i) = \prod_{i \in I} J(R_i)$.
- (c) Let $f: R \to S$ be a surjective morphism of rings. Show that $f(J(R)) \subseteq J(S)$.
- 2. Let R be a ring and let $a \in R$ be such that a + J(R) is invertible in R/J(R). Show that a is invertible in R.
- 3. Let $R_n = \mathbb{Z}/2^n\mathbb{Z}$ for $n \in \mathbb{N}$ and let $R = \prod_{n \in \mathbb{N}} R_n$. Recall that R is a ring, with sum and product defined coordinate by coordinate. Define:

$$I = \bigoplus_{n \in \mathbb{N}} 2.R_n.$$

In other words, I is the subset of $\prod_{n \in \mathbb{N}} 2 R_n$ consisting of elements having only a finite number of nonzero coordinates. Show that:

- (a) I is an ideal of R.
- (b) I is a nil ideal.
- (c) I is not a nilpotent ideal.

Deduce that R is not left Artinian (this is not the most intelligent way to prove this: show that R is neither Artinian nor Noetherian by explicitly constructing strictly descending/ascending chains of left ideals).

- 4. Let R be a ring. We say that R is von Neumann regular if for every $x \in R$ there is $y \in R$ such that x = xyx.
 - (a) Show that a division ring is von Neumann regular.
 - (b) Let $R = \prod_{i \in I} D_i$ where the D_i are division rings. Show that R is von Neumann regular.
 - (c) Let S be the ring of all functions from \mathbb{R} to \mathbb{R} . Show that S is von Neumann regular.
 - (d) Assume that R is von Neumann regular. Show that every principal (=generated by one element) left ideal of R is generated by an idempotent. Hint: If $a \in R$, and aba = a, show that ba is idempotent.