Problem sheet 4
 For Wednesday 18 February

1. Let M be an R-module. If N is a subset of M we define the annihilator of N in R :

$$
\operatorname{Ann}_{R}(N)=\{r \in R \mid r x=0 \text { for every } x \in N\} .
$$

(a) Show that $\operatorname{Ann}_{R}(N)$ is a left ideal of R.
(b) Show that, if N is a submodule of M, then $\operatorname{Ann}_{R}(N)$ is a two-sided ideal of R.
2. Let M be an R-module and let N be a submodule of M. Show that if N and M / N are both finitely generated as R-modules, then M is finitely generated.
3. Let M be an R-module and let N, P be submodules of M such that $M=N \oplus P$. Show that $M / N \cong P$ as R-modules. Hint: First isomorphism theorem.
4. (This exercise uses the opposite ring of R, introduced in Definition 2.19.)

We consider the ring

$$
R=\left(\begin{array}{cc}
\mathbb{Z} / 4 \mathbb{Z} & \mathbb{Z} / 2 \mathbb{Z} \\
0 & \mathbb{Z} / 2 \mathbb{Z}
\end{array}\right)
$$

(The sum is as usual for matrices: coordinate by coordinate. For the product: You do the product as usual in \mathbb{Z} then take the image of the result in the the corresponding quotient of \mathbb{Z}. For instance:

$$
\left(\begin{array}{ll}
3 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
6 & 4 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) .
$$

It does indeed give a ring; the product is well-defined because 4 is a multiple of 2 , check it if you want.)
We say that an element a in a ring is nilpotent if $a^{n}=0$ for some $n \in \mathbb{N}$.
(a) Show that the set N of nilpotents elements in R is

$$
\left(\begin{array}{cc}
2(\mathbb{Z} / 4 \mathbb{Z}) & \mathbb{Z} / 2 \mathbb{Z} \\
0 & 0
\end{array}\right) .
$$

(b) Compute the annihilator of N in R.
(c) Compute the right annihilator of N in R (the right annihilator of a subset B of R is $\{r \in R \mid B \cdot r=\{0\}\})$.
(d) Deduce that R and $R^{\text {op }}$ are not isomorphic.

