Problem sheet 3

We recall the following:

- Submodules are what correspond to subspaces in vector spaces.
- If M is a module and N is a subset of M, the way to check that N is a submodule is exactly how you would check that a subset of a vector space is a subspace. So you check:

1. N is not empty;
2. For every $x, y \in N$ and every $r \in R: x+y \in N$ and $r x \in N$.

- Direct sums of submodules are defined exactly as direct sums of subspaces in vector spaces.

1. Let $n \in \mathbb{N}$. We can define as usual the product of an element of $M_{n}(\mathbb{R})$ and an element of \mathbb{R}^{n} (the result is an element of \mathbb{R}^{n}). With this product and the usual sum of vectors, \mathbb{R}^{n} is an $M_{n}(\mathbb{R})$-module (you do not have to check this).
(a) Show that if $u \in \mathbb{R}^{n}$ then there is $A \in M_{n}(\mathbb{R}) \backslash\{0\}$ such that $A u=0$.
(b) Show that every non-empty set of elements of \mathbb{R}^{n} is linearly dependent (over $M_{n}(R)$). In particular \mathbb{R}^{n} does not have a basis as $M_{n}(\mathbb{R})$-module.
(c) An R-module M is called simple if its only submodules are $\{0\}$ and M.

Show that \mathbb{R}^{n} is a simple $M_{n}(\mathbb{R})$-module. (A first step can be to show that for every $u \in \mathbb{R}^{n} \backslash\{0\}$ and every $v \in \mathbb{R}^{n}$, there is $A \in M_{n}(R)$ such that $A u=v$.)
2. The objective of this exercise is to show that if M is a finitely generated R-module and N is a submodule of M, N may not be finitely generated. This is something that cannot happen in vector spaces.
Let $R=\mathbb{R}\left[X_{1}, X_{2}, X_{3}, \ldots\right]$ be the rings of polynomials with real coefficients in the indeterminates X_{i} for $i \in \mathbb{N}$. We know that R is an R-module, and we call M this R-module. Let $N=\operatorname{Span}\left\{X_{1}, X_{2}, X_{3}, \ldots\right\}$, so that N is the submodule consisting of all polynomials with 0 constant term.
(a) Observe that $M=\operatorname{Span}\{1\}$. So in particular M is finitely generated.

Assume that N is finitely generated: $N=\operatorname{Span}\left\{P_{1}, \ldots, P_{k}\right\}$.
(b) Show that for every $r \in\{1, \ldots, k\}$ there is a finite subset I_{r} of \mathbb{N} such that $P_{r} \in$ $\operatorname{Span}\left\{X_{i} \mid i \in I_{r}\right\}$.
(c) Deduce that there is $N \in \mathbb{N}$ such that $\left\{X_{i} \mid i \in \mathbb{N}\right\} \subseteq \operatorname{Span}\left\{X_{1}, \ldots, X_{N}\right\}$.
(d) Deduce a contradiction. For this you can use that if a_{i} (for $i \in \mathbb{N}$) are real numbers, then the map $f: R \rightarrow \mathbb{R}, f\left(P\left(X_{i_{1}}, \ldots, X_{i_{s}}\right)\right)=P\left(a_{i_{1}}, \ldots, a_{i_{s}}\right)$ is a morphism of rings (it is easy to check, just tedious, so we skip it).
3. Let R be a ring and let $e \in R$ be such that $e^{2}=e$ (such an element is called an idempotent) and $e r=r e$ for every $r \in R$ (i.e. $e \in C(R)$; we say that e is a central idempotent). Let M be an R-module.
(a) Show that $e M=\{e x \mid x \in M\}$ is a submodule of M.

Similarly, $1-e$ is also a central idempotent, and $(1-e) M$ is also a submodule of M.
(b) Show that $M=e M \oplus(1-e) M$ (the direct sum of modules is defined exactly as the direct sum of vector spaces). Hint: You can use that $1=e+(1-e)$ to show that $M=e M+(1-e) M$.

