Problem sheet 1

1. Let R be a ring and let $a \in R$.
(a) Let $n \in \mathbb{N}$. Show that if a^{n} has an inverse, then a has an inverse.
(b) Show that if a has a left inverse, then a is not a left zero divisor (i.e., if $a b=0$ then $b=0$).
(c) Let $a \in R \backslash\{0\}$. Show that if $a \in a R a$ and a is not a left zero divisor, then a has a left inverse. Notation: $a R a:=\{\operatorname{ara} \mid r \in R\}$.
2. Let R be a ring in which $x^{2}=x$ for all x in R (such a ring is called a Boolean ring). Show that $x+x=0$ for every $x \in R$, then prove that R is commutative. Hint: You can consider elements of the form $x+y$.
3. Let R be a ring and let I and J be left ideals of R. Show that $I \cap J$ is a left ideal of R. Remark: The same result holds for intersections of any number of left ideals (even infinite), for right ideals and for 2 -sided ideals.
4. Let $f: R \rightarrow S$ be a morphism of rings (so R and S are rings). Let K be an ideal of S. Show that $f^{-1}(K)$ is an ideal of R.
(Recall that the definition of $f^{-1}(K)$ is $\{x \in R \mid f(x) \in K\}$. Despite the notation, it does not require f to be invertible, and it coincides with f^{-1} applied to K when f is invertible.)
5. Let V be an F-vector space (where F is a field) and let $\operatorname{End}_{F}(V)$ be the set of all F linear maps from V to V. Consider on $\operatorname{End}_{F}(V)$ the following sum and product (for $\left.f, g \in \operatorname{End}_{F}(V)\right):$

- Sum: the usual sum of maps (so that $f+g$ is defined by $(f+g)(x)=f(x)+g(x)$ for every $x \in V)$.
- Product: the composition of maps. In other words, $f g(x)$ is defined by $(f g)(x) \stackrel{\text { def }}{=}$ $(f \circ g)(x)=f(g(x))$ for every $x \in V$.

Equipped with these, $\operatorname{End}_{F}(V)$ is a ring (and a very important one that we will see again) called the endomorphism ring of V. We are not going to check all the properties, just two of them:
(a) Check that the identity map is the element 1 in the $\operatorname{ring} \operatorname{End}_{F}(V)$.
(b) Check the property of distributivity.

Hint: The elements of $\operatorname{End}_{F}(V)$ are functions. So, two elements $f_{1}, f_{2} \in \operatorname{End}_{F}(V)$ are equal if and only if $f_{1}(x)=f_{2}(x)$ for every $x \in V$.

One more exercise on the other side
6. Example of a ring where some elements are invertible on one side but not on the other. Recall that

$$
\mathbb{R}^{\mathbb{N}}=\left\{\left(x_{i}\right)_{i \in \mathbb{N}} \mid x_{i} \in \mathbb{R}\right\},
$$

the set of sequences of real numbers indexed by elements of \mathbb{N}, is an \mathbb{R}-vector space (exactly in the same way that \mathbb{R}^{3} is an \mathbb{R}-vector space, we just have more coordinates).
Let R be the set of all \mathbb{R}-linear maps from $\mathbb{R}^{\mathbb{N}}$ to $\mathbb{R}^{\mathbb{N}}$. As seen in the previous exercise, R is a ring. Let $f, g \in R$ be the maps defined by

$$
\begin{gathered}
g\left(\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right) \text { and } \\
\quad f\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right)=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right) .
\end{gathered}
$$

Show that g is right invertible but not left invertible (hint: write what g left invertible means and show that it would imply g injective) and that f is left invertible but not right invertible (hint: write what f right invertible means and show that it would imply f surjective).

