Problem sheet 7

1. Let f be the (potential) isomorphism from G_{1} to G_{2}. 3 is the only vertex of G_{1} of degree 2 so we must take $f(3)=5$. Then 2 (being adjacent to 3) has to be sent to 1 or 4 . Let's pick $f(2)=1$. Then we must have $f(4)=4$. Looking at the graphs, there is no obvious difference between the properties of the remaining vertices, so we take (at random) $f(5)=2$ and $f(1)=3$.
We now must check, for every vertices u and v in G_{1}, that $u v$ is an edge iff $f(u) f(v)$ is an edge. The most efficient way to do this is to chekc that for every edge $u v$ of G_{1} then $f(u) f(v)$ is an edge of G_{2}, and that for every edge $x y$ of G_{2} then $f^{-1}(x) f^{-1}(y)$ is an edge of G_{1}. It is a bit long but straightforward.
2. Since it is Eulerian there is a circuit that will go through all streets exactly once. Since he needs to go through every street at least once, the Euler circuit is a shortest possible route.
3. Let (X, Y) be a bipartition of G, and let f be the isomorphism from G to H. Then $V_{H}=f(X) \cup f(Y)$ with $f(X) \cap f(Y)=\emptyset$. Furthermore, if $u v$ is an edge in H, we have $u=f(a)$ and $v=f(b)$ for some $a, b \in V_{G}$. Since G is bipartite, one of a, b is in X and the other in Y, so one of u, v is in $f(X)$ and the other in $f(Y)$.
You can also use the isomorphism to show that H has no cycle of odd length, which will show that H is bipartite.
4. An isomorphism would have to send the unique vertex of degree one of the first graph to the unique vertex of degree one of the second graph, so a to 2 , then d to 8 , then $\{g, h\}$ to $\{3,6\}$. But 3 and 6 are adjacent, while g and h are not.
5.

