Problem sheet 5

1. Follow the examples seen in class.
2. " \Rightarrow " Assume that there is a spanning tree T of G such that e does not belong to T. Then removing e from G does not disconnect G (going from one vertex to another can be done on T, which does not contain $e)$, contradiction.
" \Leftarrow " Assume that e is not a cut edge of G. Then $G \backslash\{e\}$ is connected and thus has a spanning tree T. Then T is a spanning tree of G that does not contain e, contradiction.
3. (a) Let n be the number of vertices of T. We know that the number of edges is $n-1$. The degree sum formula thus gives

$$
\sum_{v \in V} d(v)=2|E|=2 n-2 .
$$

If every vertex had degree at least 2 , we would get $\sum_{v \in V} d(v) \geq$ $2 n$, impossible.
So at least one vertex has degree less than two. Let u be this vertex. Since T has at least 2 vertices, the degree of u is at least 1 (because there is a path from u to some other vertex). Thus the sum of the degrees of the vertices is at least $2 n-1$, impossible because it would give $2 n-1 \leq 2 n-2$.
Therefore at least 2 vertices must have degree less than 2, i.e. degree 1 (again, since there are at least 2 vertices in T, and a tree is connected, each vertex has degree at least 1).
(b) Let $P=v_{1} \cdots v_{k}$ be a path of maximal length. Assume that $d\left(v_{k}\right) \geq 2$ (we will show that it is not possible, so that $d\left(v_{k}\right)=1$, i.e., v_{k} is a leaf). Then v_{k} is adjacent to at least v_{k-1} and another vertex u. If u is not one of v_{1}, \ldots, v_{k-1}, then $v_{1} \cdots v_{k} u$ is a path longer than P, which is impossible, so u is one of v_{1}, \ldots, v_{k-1}. Say $u=v_{i}$. Then $v_{i} v_{i+1} \cdots v_{k} u$ is a cyle in T, impossible.
We show similarly that v_{1} is a leaf (it is a correct answer that you can use in an exam, but only if it is really similar).
4. (a) Let u_{1}, \ldots, u_{k} be the vertices that v is adjacent to. Let g_{i} be the component of $G\{v\}$ for $i=1, \ldots, k$. We first show that G_{1}, \ldots, G_{k} are all different (so that $G \backslash\{v\}$ has at least k components.
Suppose that $G_{i}=G_{j}$ with $i \neq j$. Since $u_{i}, u_{j} \ni G_{i}$ (which is connected) there is a path P in G_{i} from u_{i} to u_{j}. But $P^{\prime}=u_{j} v u_{i}$ is a path with edges that are not in P (since these edges are not in $G \backslash\{v\}$. Putting P^{\prime} at the end of P, we get a cycle in G, impossible.
We now show that any component of $G \backslash\{v\}$ is equal to one of G_{1}, \ldots, G_{k} (so that there are exactly k components). Let H be a component of $G \backslash\{v\}$ and let $u \in H$. Let $P=u v_{1} \cdots v_{t} v$ be a path in G from u to v (observe that v_{1}, \ldots, v_{t} are all different from v). Then there is $i \in\{1, \ldots, k\}$ such that $v_{t}=u_{i}$ (since v_{t} is adjacent to v). Therefore $u v_{1} \cdots v_{t}$ is a path in $G \backslash\{v\}$ from u to u_{i} and thus $u \in G_{i}$.
(b) Each G_{i} (same notation as for the previous question) is a tree (is it connected, and has no cycle since G has no cycle). By Exercise 3, we have 2 cases: G_{i} has only one vertex, or G_{i} are at least 2 leaves. In the first case, this vertex is adjacent (in G) to v only, so is a leaf in G. In the second case, at least one of these leaves is not adjacent to v, so is a leaf in G. In both cases, each G_{i} brings at least one leaf to G. So G has at least k leaves.

