Problem sheet 5

- 1. Follow the examples seen in class.
- 2. " \Rightarrow " Assume that there is a spanning tree T of G such that e does not belong to T. Then removing e from G does not disconnect G (going from one vertex to another can be done on T, which does not contain e), contradiction.

" \Leftarrow " Assume that *e* is not a cut edge of *G*. Then $G \setminus \{e\}$ is connected and thus has a spanning tree *T*. Then *T* is a spanning tree of *G* that does not contain *e*, contradiction.

3. (a) Let n be the number of vertices of T. We know that the number of edges is n - 1. The degree sum formula thus gives

$$\sum_{v \in V} d(v) = 2|E| = 2n - 2.$$

If every vertex had degree at least 2, we would get $\sum_{v \in V} d(v) \ge 2n$, impossible.

So at least one vertex has degree less than two. Let u be this vertex. Since T has at least 2 vertices, the degree of u is at least 1 (because there is a path from u to some other vertex). Thus the sum of the degrees of the vertices is at least 2n - 1, impossible because it would give $2n - 1 \leq 2n - 2$.

Therefore at least 2 vertices must have degree less than 2, i.e. degree 1 (again, since there are at least 2 vertices in T, and a tree is connected, each vertex has degree at least 1).

(b) Let $P = v_1 \cdots v_k$ be a path of maximal length. Assume that $d(v_k) \ge 2$ (we will show that it is not possible, so that $d(v_k) = 1$, i.e., v_k is a leaf). Then v_k is adjacent to at least v_{k-1} and another vertex u. If u is not one of v_1, \ldots, v_{k-1} , then $v_1 \cdots v_k u$ is a path longer than P, which is impossible, so u is one of v_1, \ldots, v_{k-1} . Say $u = v_i$. Then $v_i v_{i+1} \cdots v_k u$ is a cyle in T, impossible.

We show similarly that v_1 is a leaf (it is a correct answer that you can use in an exam, but only if it is really similar).

4. (a) Let u₁,..., u_k be the vertices that v is adjacent to. Let g_i be the component of G{v} for i = 1,..., k. We first show that G₁,..., G_k are all different (so that G \ {v} has at least k components.

Suppose that $G_i = G_j$ with $i \neq j$. Since $u_i, u_j \ni G_i$ (which is connected) there is a path P in G_i from u_i to u_j . But $P' = u_j v u_i$ is a path with edges that are not in P (since these edges are not in $G \setminus \{v\}$. Putting P' at the end of P, we get a cycle in G, impossible.

We now show that any component of $G \setminus \{v\}$ is equal to one of G_1, \ldots, G_k (so that there are exactly k components). Let H be a component of $G \setminus \{v\}$ and let $u \in H$. Let $P = uv_1 \cdots v_t v$ be a path in G from u to v (observe that v_1, \ldots, v_t are all different from v). Then there is $i \in \{1, \ldots, k\}$ such that $v_t = u_i$ (since v_t is adjacent to v). Therefore $uv_1 \cdots v_t$ is a path in $G \setminus \{v\}$ from u to u_i and thus $u \in G_i$.

(b) Each G_i (same notation as for the previous question) is a tree (is it connected, and has no cycle since G has no cycle). By Exercise 3, we have 2 cases: G_i has only one vertex, or G_i are at least 2 leaves. In the first case, this vertex is adjacent (in G) to v only, so is a leaf in G. In the second case, at least one of these leaves is not adjacent to v, so is a leaf in G. In both cases, each G_i brings at least one leaf to G. So G has at least k leaves.