Problem sheet 4

1. This molecule is a tree with $m+n$ vertices. Therefore it has $m+n-1$ edges. Since every C has 4 bonds and every H has one bond, the sum of the degrees is $4 m+n$. By the degree sum formula we get that the number of edges is $(4 m+n) / 2$, i.e. $4 m+n=2(m+n-1)$, so $n=2 m+2$.
2. $A+I_{n}$ is the adjacency matrix of the graph G^{\prime} obtained from G by adding a loop at each vertex.
" \Rightarrow " Consider the entry (i, j) of $\left(A+I_{n}\right)^{n-1}$. To show that it is nonzero we must show that there is a path of length $n-1$ in G^{\prime} from v_{i} to v_{j}. Since G is connected, there is a path P in G from v_{i} to v_{j}, and this path has length $k \leq n-1$ (since there are only n vertices in G). To get a path of length $n-1$ in G^{\prime} from v_{i} to v_{j}, follow first the path P, then loop $n-1-k$ times at v_{j} (using the loop at v_{j}).
" \Leftarrow " Let v_{i} and v_{j} be vertices in G. Since $\left(A+I_{n}\right)^{n-1}$ has no zero entries, there is a path of length $n-1$ in G^{\prime} from v_{i} to v_{j}. Obviously we can remove all the loops from this path, and we obtain a path in G from v_{i} to v_{j} (we do not know its length).
3. Every time we remove an edge from a cycle the resulting graph is still connected (seen in class). So the graph T is connected. Since it contains no cycles, it is a tree. It still has n vertices (we did not remove any vertex from G), so T has $n-1$ edges. Therefore we removed $m-n+1$ edges.
4. " \Rightarrow " If x and y are in the same component of G, since this component is a tree, we know that there is exactly one path from x to y. If x and y are in different components of G, there is no path from x to y.
" \Leftarrow " Let H be a component of G. We show that H is a tree. Let $x, y \in H$. Since H is connected there is at least one path from x to y, and by hypothesis we know that there is exactly one path from x to y. So H is a tree, and G is a forest (since every component is a tree).
