Problem sheet 4

- 1. This molecule is a tree with m+n vertices. Therefore it has m+n-1 edges. Since every C has 4 bonds and every H has one bond, the sum of the degrees is 4m+n. By the degree sum formula we get that the number of edges is (4m+n)/2, i.e. 4m+n=2(m+n-1), so n=2m+2.
- 2. $A + I_n$ is the adjacency matrix of the graph G' obtained from G by adding a loop at each vertex.
 - " \Rightarrow " Consider the entry (i,j) of $(A+I_n)^{n-1}$. To show that it is non-zero we must show that there is a path of length n-1 in G' from v_i to v_j . Since G is connected, there is a path P in G from v_i to v_j , and this path has length $k \leq n-1$ (since there are only n vertices in G). To get a path of length n-1 in G' from v_i to v_j , follow first the path P, then loop n-1-k times at v_j (using the loop at v_j).
 - " \Leftarrow " Let v_i and v_j be vertices in G. Since $(A + I_n)^{n-1}$ has no zero entries, there is a path of length n-1 in G' from v_i to v_j . Obviously we can remove all the loops from this path, and we obtain a path in G from v_i to v_j (we do not know its length).
- 3. Every time we remove an edge from a cycle the resulting graph is still connected (seen in class). So the graph T is connected. Since it contains no cycles, it is a tree. It still has n vertices (we did not remove any vertex from G), so T has n-1 edges. Therefore we removed m-n+1 edges.
- 4. " \Rightarrow " If x and y are in the same component of G, since this component is a tree, we know that there is exactly one path from x to y. If x and y are in different components of G, there is no path from x to y.
 - " \Leftarrow " Let H be a component of G. We show that H is a tree. Let $x, y \in H$. Since H is connected there is at least one path from x to y, and by hypothesis we know that there is exactly one path from x to y. So H is a tree, and G is a forest (since every component is a tree).